Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.674
Filtrar
1.
Int J Med Sci ; 18(1): 226-238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390791

RESUMO

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and the prognosis of HNSCC remains bleak. Numerous studies revealed that the tumor mutation burden (TMB) could predict the survival outcomes of a variety of tumors. Objectives: This study aimed to investigate the TMB and immune cell infiltration in these patients and construct an immune-related genes (IRGs) prognostic model. Methods: The expression data of 546 HNSCC patients were obtained from The Cancer Genome Atlas (TCGA) database. All patients were divided into high- and low- TMB groups, and the relationship between TMB and clinical relevance was further analyzed. The differentially expressed genes (DEGs) were identified using the R software package, limma. Functional enrichment analyses were conducted to identify the significantly enriched pathways between two groups. CIBERSORT algorithm was adopted to calculate the abundance of 22 leukocyte subtypes. The IRGs prognostic model was constructed via the multivariate Cox regression analysis. Results: Missense mutation and single nucleotide variants (SNV) were the most predominant mutation types in HNSCC. TP53, TTN, and FAT1 were the most frequently mutated genes. Patients with high TMB were observed with worse survival outcomes. The functional analysis of TMB associated DEGs showed that the identified DEGs mainly involved in spliceosome, RNA degradation, proteasome, and RNA polymerase pathways. We observed that macrophages, T cells CD8, and T cells CD4 memory were the most commonly infiltrated subtypes of immune cells in HNSCC. Finally, an IRGs prognostic model was constructed, and the AUC of the ROC curve was 0.635. Conclusions: Our results suggest that high TMB is associated with poor prognosis in HNSCC patients. The constructed model has potential prognostic value for the prognosis of these individuals, and it needs to be further validated in large-scale and prospective studies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33415810

RESUMO

Self-sorting plays crucial roles in living system such as the selective assembly of DNA and specific folding of proteins. However, self-sorting of artificial helical polymers as those of biomacromolecules has rarely been achieved. In this work, single-handed helical poly(phenyl isocyanide)s bearing pyrene (Py) and naphthalene (Np) probes were prepared, which exhibited interesting self-sorting properties driven by both helicity and molecular weight (Mn) in solution, solid state, gel and on gel surface as well. The polymers with the same helix-sense and similar Mn can self-sorted and assembly into well-defined two-dimensional smectic architectures and form stable gels in organic solvents. While mixed polymers with opposite handedness or in different Mn were repulsive to each other and couldn't aggregate together. Moreover, the gels of helical polymers with the same handedness and similar Mn can recognize themselves and adhere together to form a one gel.

3.
Curr Microbiol ; 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386938

RESUMO

GP64 is the key membrane fusion protein of Group I baculovirus, and while the Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 contains a longer n-region (18 amino acid) of the signal peptide than does the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the function of the n-region has not been determined. In this study, we first showed that n-region is required for membrane protein localization in BmN cells, then the transcriptome sequencing was conducted on proteins guided by different signal peptide regions, and the results were analyzed and validated by quantitative PCR and luciferase assays. The results indicated that 1049 differentially expressed genes (DEGs) were identified among the different region of signal peptides and the control. With the n-region, the protein export pathway was upregulated significantly, the Wnt-1 signaling pathway was downregulated, and BiP was significantly activated by the GP64 full-length signal peptide. Furthermore, RNA interference on BiP efficiently increased luciferase secretion. These results indicate that the GP64 n-region plays a key role in protein expression and regulation.

4.
J Mol Med (Berl) ; 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33409553

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with poor prognosis and overall survival. Clinical investigations show that chronic stress is commonly present in the course of AML and associated with adverse outcome. However, the underlying molecular mechanisms are elusive. In the present study, a chronic restraint stress mouse model was established to evaluate the effect of stress on AML. We found that mice under chronic stress exhibited significantly increased liver and spleen infiltration of leukemic cells and poorer overall survival. This was accompanied by elevated cellular NLR family pyrin domain containing 3 (NLRP3) and interleukin-1ß (IL-1ß) in the liver or bone marrow, and secreted IL-1ß in the plasma, indicating the activation of inflammasomes under chronic restraint stress. High mobility group box 1 (HMGB1) expression was markedly increased in newly diagnosed AML patients, but reduced in complete remission AML patients. The expression level of HMGB1 was positively correlated with NLRP3 mRNA in AML patients. Knockdown of HMGB1 significantly decreased NLRP3 and IL-1ß expression in AML cell lines, and secreted IL-1ß in supernatant of AML cell culture, while HMGB1 stimulation caused contrary effects. These results implied that HMGB1 could be involved in the regulation of inflammasome activation in AML development. Mice model showed that chronic restraint stress-facilitated proliferation and infiltration of AML cells were largely abrogated by knocking down HMGB1. Knockdown of HMGB1 also ameliorated overall survival and remarkably neutralized NLRP3 and IL-1ß expression under chronic restraint stress. These findings provide evidences that chronic stress promotes AML progression via HMGB1/NLRP3/IL-1ß dependent mechanism, suggesting that HMGB1 is a potential therapeutic target for AML. KEY MESSAGES: • Chronic restraint stress promoted acute myeloid leukemia (AML) progression and mediated NLRP3 inflammasome activation in xenograft mice. • HMGB1 mediated NLRP3 inflammasome activation in AML cells. • Knockdown of HMGB1 inhibited AML progression under chronic stress in vivo.

5.
Cell Rep ; 34(1): 108575, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406415

RESUMO

SETDB1 is a histone-lysine N-methyltransferase critical for germline development. However, its function in early meiotic prophase I remains unknown. Here, we report that Setdb1 null spermatocytes display aberrant centromere clustering during leptotene, bouquet formation during zygotene, and subsequent failure in pairing and synapsis of homologous chromosomes, as well as compromised meiotic silencing of unsynapsed chromatin, which leads to meiotic arrest before pachytene and apoptosis of spermatocytes. H3K9me3 is enriched in centromeric or pericentromeric regions and is present in many sites throughout the genome, with a subset changed in the Setdb1 mutant. These observations indicate that SETDB1-mediated H3K9me3 is essential for the bivalent formation in early meiosis. Transcriptome analysis reveals the function of SETDB1 in repressing transposons and transposon-proximal genes and in regulating meiotic and somatic lineage genes. These findings highlight a mechanism in which SETDB1-mediated H3K9me3 during early meiosis ensures the formation of homologous bivalents and survival of spermatocytes.

6.
Neural Regen Res ; 16(8): 1582-1591, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33433488

RESUMO

Oxidative stress is a crucial pathological process that contributes to secondary injury following intracerebral hemorrhage. P2X7 receptor (P2X7R), which is activated by the abnormal accumulation of extracellular ATP, plays an important role in the regulation of oxidative stress in the central nervous system, although the effects of activated P2X7R-associated oxidative stress after intracerebral hemorrhage remain unclear. Mouse models of intracerebral hemorrhage were established through the stereotactic injection of 0.075 U VII collagenase into the right basal ganglia. The results revealed that P2X7R expression peaked 24 hours after intracerebral hemorrhage, and P2X7R expressed primarily in neurons. The inhibition of P2X7R, using A438079 (100 mg/kg, intraperitoneal), reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression and malondialdehyde generation, increased superoxide dismutase and glutathione/oxidized glutathione levels, and alleviated neurological damage, brain edema, and apoptosis after intracellular hemorrhage. The P2X7R inhibitor A438079 (100 mg/kg, intraperitoneal injection) inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-B (NF-κB) after intracerebral hemorrhage. Blocking ERK1/2 activation, using the ERK1/2 inhibitor U0126 (2 µg, intraventricular injection), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation after intracellular hemorrhage. Similarly, the inhibition of NF-κB, using the NF-κB inhibitor JSH-23 (3.5 µg, intraventricular), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation. Finally, GSK2795039 (100 mg/kg, intraperitoneal), a NOX2 antagonist, attenuated P2X7R-mediated oxidative stress, neurological damage, and brain edema after intracerebral hemorrhage. The results indicated that P2X7R activation aggravated NOX2-induced oxidative stress through the activation of the ERK1/2 and NF-κB pathways following intracerebral hemorrhage in mice. The present study was approved by the Ethics Committee of Huazhong University of Science and Technology, China (approval No. TJ-A20160805) on August 26, 2016.

7.
Theor Appl Genet ; 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33433637

RESUMO

Pea (Pisum sativum L.), a cool-season legume crop grown in more than 85 countries, is the second most important grain legume and one of the major green vegetables in the world. While pea was historically studied as the genetic model leading to the discovery of the laws of genetics, pea research has lagged behind that of other major legumes in the genomics era, due to its large and complex genome. The evolving climate change and growing population have posed grand challenges to the objective of feeding the world, making it essential to invest research efforts to develop multi-omics resources and advanced breeding tools to support fast and continuous development of improved pea varieties. Recently, the pea researchers have achieved key milestones in omics and molecular breeding. The present review provides an overview of the recent important progress including the development of genetic resource databases, high-throughput genotyping assays, reference genome, genes/QTLs responsible for important traits, transcriptomic, proteomic, and phenomic atlases of various tissues under different conditions. These multi-faceted resources have enabled the successful implementation of various markers for monitoring early-generation populations as in marker-assisted backcrossing breeding programs. The emerging new breeding approaches such as CRISPR, speed breeding, and genomic selection are starting to change the paradigm of pea breeding. Collectively, the rich omics resources and omics-enable breeding approaches will enhance genetic gain in pea breeding and accelerate the release of novel pea varieties to meet the elevating demands on productivity and quality.

8.
Mol Cancer ; 20(1): 14, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430876

RESUMO

Currently, there is no strong evidence of the well-established biomarkers for immune checkpoint inhibitors (ICIs) in nasopharyngeal carcinoma (NPC). Here, we aimed to reveal the heterogeneity of tumour microenvironment (TME) through virtual microdissection of gene expression profiles. An immune-enriched subtype was identified in 38% (43/113) of patients, which was characterized by significant enrichment of immune cells or immune responses. The remaining patients were therefore classified as a non-Immune Subtype (non-IS), which exhibited highly proliferative features. Then we identified a tumour immune evasion state within the immune-enriched subtype (18/43, 42%), in which high expression of exclusion- and dysfunction-related signatures was observed. These subgroups were designated the Evaded and Active Immune Subtype (E-IS and A-IS), respectively. We further demonstrated that A-IS predicted favourable survival and improved ICI response as compared to E-IS and non-IS. In summary, this study introduces the novel immune subtypes and demonstrates their feasibility in tailoring immunotherapeutic strategies.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33438124

RESUMO

Irrational application of chemical fertilizers causes soil nutrient imbalance, reduced microbial diversity, soil diseases, and other soil quality problems and is one of the main sources of non-point pollution. The application of microbial inoculant (MI) can improve the soil environment and crop growth to reduce problems caused by irrational application of chemical fertilizers. Field experiments were carried out in high-phosphorus soils to study the effects of the addition of various MIs combined with chemical fertilizers on soil properties, wheat growth, and soil microbial composition and structure. The MIs consisted of one fungal agent: Trichoderma compound agent (TC) and five bacterial agents, namely soil remediation agent (SR), anti-repeat microbial agent (AM), microbial agent (MA), plant growth-promoting rhizobacteria (PG), and biological fertilizer agent (BF). The wheat yield increased by 15.2-33.4% with the addition of MIs, and PG with Bacillus subtilis as the core microorganism had the most obvious effect on increasing the production (p < 0.05). For the entire growth period of wheat, all MIs applied significantly increased the available nitrogen (AN) (p < 0.05) but did not significantly affect the available phosphorus (AP). BF has the best effect on increasing AN in the soil. The 16S rRNA sequencing results indicated that the dominant phyla of soil bacteria were Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The addition of MIs increased the relative abundance of Acidobacteria, Actinobacteria, Chloroflexi and decreased Proteobacteria and Bacteroidetes. The diversity of soil bacterial community (Chao1) was significantly higher in the soil added with TC than that added with BF (p < 0.05). All bacterial agents significantly enriched various genera (p < 0.05), while the fungal agent (TC) did not enrich the genera significantly. pH and AN, but not TP, were closely related to the dominant bacteria phylum in high-P soil. The application of MIs improved AN in soil, increased the wheat yield, and changed the relative abundance of the soil dominant phylum, and these changes were closely related to the type of MIs. The results provide a scientific basis for rational use of different types of MIs in high-P soil.

10.
Cardiol J ; 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438182

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary arterial pressure and pulmonary arterioles remodeling. Some studies have discovered the relationship between sympathetic nerves (SNs) and pathogenesis of PAH. This review is aimed to illustrate the location and components of SNs in the pulmonary artery, along with different methods and effects of pulmonary artery denervation (PADN). Studies have shown that the SNs distributed mainly around the main pulmonary artery (MPA) and pulmonary artery (PA) bifurcation. And the SNs could be destroyed by three ways: the chemical way, the surgical way and the catheter-based way. PADN can significantly decrease pulmonary arterial pressure rapidly, improve hemodynamic varieties, and then palliate PAH. PADN has been recognized as a prospective and effective therapy for PAH patients, especially for those with medication-refractory PAH. However, further enlarged clinical studies are needed to confirm accurate distribution of SNs in the pulmonary artery and the efficacy of PADN.

11.
Thromb Res ; 197: 36-43, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166900

RESUMO

Patients with essential hypertension (EH) and hyperhomocysteinemia (HHCY) suffer from more increased thrombotic events than those in EH alone. However, the underlying mechanisms for this effect are not well understood. This study hypothesized that neutrophil extracellular trap (NET) releasing may be triggered by HHCY in patients in EH, thereby predisposing them to a more hypercoagulable state. Using a modified-capture enzyme-linked immunosorbent assay (ELISA) method, we observed that cell-free DNA (CF-DNA) and myeloperoxidase DNA (MPO-DNA) in patients With EH and HHCY were significantly higher. The NET formation was also positively correlated with homocysteine levels, neutrophil-lymphocyte ratio (NLR), and hypercoagulable markers (thrombin-antithrombin complex, D-dimers). Furthermore, neutrophils from patients in EH with HHCY were found to be predisposed to amplified NET release when compared to patients in EH without HHCY or CTR. Coagulation function assays showed that NETs in patients With EH and HHCY resulted in a significantly increased ability to generate thrombin and fibrin than in those in EH without HHCY or CTR. These procoagulant effects of NETs in patients With EH and HHCY were markedly inhibited (approximately 70%) by the cleavage of NETs with DNase I. Isolated NETs from patients With EH and HHCY neutrophils also exerted a strong cytotoxic effect on endothelial cells (ECs), converted them to apoptosis. This study revealed a previously unrecognized association between the hypercoagulable state and neutrophils in patients With EH and HHCY. Therefore, blocking NETs may represent a new therapeutic objective for preventing thrombosis in these patients.

13.
Eur J Pharmacol ; 891: 173768, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33271150

RESUMO

Phosphodiesterase 2 is one of the phosphodiesterase (PDEs) family members that regulate cyclic nucleotide (namely cAMP and cGMP) concentrations. The present study determined whether PDE2 inhibition could rescue post-traumatic stress disorder (PTSD)-like symptoms. Mice were subjected to single prolonged stress (SPS) and treated with selective PDE2 inhibitor Bay 60-7550 (0.3, 1, or 3 mg/kg, i.p.). The behavioral tests such as forced swimming, sucrose preference test, open field, elevated plus maze, and contextual fear paradigm were conducted to determine the effects of Bay 60-7550 on SPS-induced depression- and anxiety-like behavior and fear memory deficits. The results suggested that Bay 60-7550 reversed SPS-induced depression- and anxiety-like behavior and fear memory deficits. Moreover, Bay 60-7550 prevented SPS-induced changes in the adrenal gland index, synaptic proteins synaptophysin and PSD95 expression, PKA, PKG, pCREB, and BDNF levels in the hippocampus and amygdala. These effects were completely prevented by PKG inhibitor KT5823. While PKA inhibitor H89 also prevented Bay 60-7550-induced pCREB and BDNF expression, but only partially prevented the effects on PSD95 expression in the hippocampus. These findings suggest that Bay 60-7550 protects mice against PTSD-like stress induced traumatic injury by activation of cGMP- or cAMP-related neuroprotective molecules, such as synaptic proteins, pCREB and BDNF.

14.
Virology ; 553: 62-69, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33238224

RESUMO

Increasing evidences indicate that high-risk HPV variants are heterogeneous in carcinogenicity and ethnic dispersion. In this work, we identified genetic signatures for convenient determination of lineage/sublineage of HPV16, 18, 52 and 58 variants. Using publicly available genomes, we found that E2 of HPV16, L2 of HPV18, L1 and LCR of HPV52, and L2, LCR and E1 of HPV58 contain the proper genetic signature for lineage/sublineage classification. Sets of hierarchical signature nucleotide positions were further confirmed for high accuracy (>95%) by classifying HPV genomes obtained from Chinese females, which included 117 HPV16 variants, 48 HPV18 variants, 117 HPV52 variants and 89 HPV58 variants. The circulation of HPV variants posing higher cancer risk in Eastern China, such as HPV16 A4 and HPV58 A3, calls for continuous surveillance in this region. The marker genes and signature nucleotide positions may facilitate cost-effective diagnostic detections of HPV variants in clinical settings.

15.
Mol Ther ; 29(1): 263-274, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33002417

RESUMO

Ferroptosis is primarily caused by intracellular iron catalytic activity and lipid peroxidation. The potential interplay between ferroptosis and apoptosis remains poorly understood. Here, we show that the expression of a nuclear long non-coding RNA (lncRNA), LINC00618, is reduced in human leukemia and strongly increased by vincristine (VCR) treatment. Furthermore, LINC00618 promotes apoptosis by increasing the levels of BCL2-Associated X (BAX) and cleavage of caspase-3. LINC00618 also accelerates ferroptosis by increasing the levels of lipid reactive oxygen species (ROS) and iron, two surrogate markers of ferroptosis, and decreasing the expression of solute carrier family 7 member 11 (SLC7A11). Interestingly, VCR-induced ferroptosis and apoptosis are promoted by LINC00618, and LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. LINC00618 attenuates the expression of lymphoid-specific helicase (LSH), and LSH enhances the transcription of SLC7A11 after the recruitment to the promoter regions of SLC7A11, further inhibiting ferroptosis. Knowledge of these mechanisms demonstrates that lncRNAs related to ferroptosis and apoptosis are critical to leukemogenesis and chemotherapy.

16.
Oncogene ; 40(1): 46-54, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33051598

RESUMO

Chronic BK polyomavirus (BKPyV) infection is recognized as a potential oncogenic factor of urothelial carcinoma (UC) in renal transplant recipients. Recent studies have reported a positive correlation among BKPyV integration, persistent overexpression of viral large T antigen (TAg), and malignancy, yet little is known about the specific integration mechanisms and the impacts of viral integration. Here, we performed whole-genome sequencing (WGS) and viral capture-based sequencing on high-grade immunohistochemically TAg-positive UCs in two renal transplant recipients. A total of 181 integration sites, including the three found by WGS, were identified by viral capture-based sequencing, indicating its enhanced sensitivity and ability in identifying low-read integration sites in subpopulations of the tumor cells. The microhomologies between human and BKPyV genomes were significantly enriched in the flanking regions of 84.5% the integration sites, with a median length of 7 bp. Notably, 75 human genes formed fusion sequences due to viral insertional integration. Among them, the expression of 15 genes were statistically associated with UC based on GEO2R expression analysis. Our results indicated a multisite and multifragment linear integration pattern and a potential microhomology or nonhomologous end joining integration mechanism at the single-nucleotide level. We put forward a potential selection mechanism driven by immunity and centered on viral integration in the carcinogenesis of BKPyV.

17.
Mol Med Rep ; 23(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33179109

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in premature infants, and alveolar dysplasia and pulmonary vascular development disorders are the predominant pathological features. Apoptosis of lung epithelial cells is a key factor in the pathological process of alveolar developmental arrest. Endoplasmic reticulum stress (ERS)­associated apoptosis is a noncanonical apoptotic pathway involved in the development of several pulmonary diseases. Previous studies have demonstrated that protein kinase RNA­like endoplasmic reticulum kinase, inositol­requiring enzyme 1α (IRE1α) and activating transcription factor 6 can initiate the apoptosis signaling pathway mediated by ERS and induce apoptosis of injured cells. Among them, the IRE1α pathway is the most conservative pathway in the unfolded protein response, which serves an important role in a number of pathological environments, to the extent of determining cell fate; however, it is rarely reported in BPD. Based on the establishment of a rat BPD model, the present study verified the activation of ERS in BPD and further confirmed that prolonged ERS inhibited the protective pathway, IRE1α/X­box binding proteins, and activated the proapoptotic pathway, IRE1α/c­Jun N­terminal kinase, to induce the apoptosis of lung epitheliums.

18.
Microvasc Res ; 133: 104061, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32827495

RESUMO

BACKGROUND: The pathological character of cerebral small vessel disease (CSVD) is the dysfunction of cerebral small arteries caused by risk factors. A switch from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (SMCs) can decrease the contractility of arteries. The alteration of the vascular wall extracellular matrix (ECM) is found to regulate the process. We speculated that SMCs phenotype changes may also occur in CSVD induced by hypertension and the alteration of ECM especially fibronectin and laminin may regulate the process. METHOD: Male spontaneously hypertensive rats (SHR) were used as a CSVD animal model. SMCs phenotypic markers and the ECM expression of the cerebral small arteries of SHR at different ages were evaluated by immunofluorescence. The phenotype changes of primary brain microvascular SMCs cultured on laminin-coating dish or fibronectin-coating dish were evaluated by western blot. RESULT: A switch from the contractile phenotype to synthetic phenotype in SHR at 10 and 22 weeks of age was observed. Meanwhile, increased expression of fibronectin and a temporary decline of laminin was found in small arteries of SHR at 22 weeks. In vitro experiments also convinced that SMCs cultured on a fibronectin-coating dish failed to maintain contractile phenotype. While at 50 weeks, significant drops of both synthetic and contractile phenotypic markers were witnessed in SHR, with high expressions of four kinds of ECM. CONCLUSION: SMCs in cerebral small arteries exhibited a switch from the contractile phenotype to synthetic phenotype during the chronic process of hypertension and aging. Moreover, the change of fibronectin and laminin may regulate the process.

19.
Psychophysiology ; 58(2): e13711, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128481

RESUMO

Individuals with hoarding disorder (HD) typically perform worse than peers on neuropsychological tasks involving visual perception. Functional neuroimaging shows diffusely increased activity in the visual cortex, consistent with inefficient visual processing in HD. The temporal locus of these inefficiencies in HD is unknown. This study examined the temporal unfolding of visual event-related brain potentials (ERPs) to help better define the neurophysiological mechanisms underlying visual dysfunction in HD. Thirty-three individuals with HD and 35 healthy controls (HC) were assessed using a 64-channel EEG during a modified flanker task. Permutation-controlled analyses were conducted to detect group differences in visual evoked ERPs on a millisecond-to-millisecond basis. Bayesian ANCOVAs and linear regressions that included hoarding and age were conducted to identify the best-fit model for the identified VEPs, compared to a null model that included depression and anxiety severity. Three temporal regions (175 ms, 270 ms, and 440 ms), showed differences in amplitude between HD and HC and were consistent with ERP components N1, P1/N2, and a late negative slow wave (LNSW), respectively. After controlling for depression and anxiety, HD demonstrated an enhanced ERP amplitude at N1 and an attenuated amplitude in LNSW compared to HC but did not show differences at P1/N2. For the N1 and LNSW, there was also a primary effect of the interaction between hoarding and age. This study indicates that altered visuocortical reactivity in HD first occurs at the level of visuocortical processing after 170 ms, indicating alterations of middle and later, but not early, processing in occipitotemporal visual cortex.

20.
Int J Mol Med ; 47(1): 361-373, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33236128

RESUMO

The aim of the present study was to explore the potential role of SOX11 in the stretch­induced mechanical injury to alveolar type 2 epithelial (AT2) cells. A cell stretch (CS) test was used to induce mechanical injury to primary cultured AT2 cells. Wound healing, adhesion, cell viability assays and flow cytometry were performed to evaluate the migration, adhesion, viability and apoptosis of AT2 cells. Changes in the invasive ability of AT2 cells were detected using a Transwell invasion assay. To further explore the underlying molecular mechanisms, reverse transcription­quantitative PCR and western blot analysis were used to assess the expression levels of SOX11, FAK, Akt, caspase­3/8, p65 and matrix metalloproteinase (MMP)7. Co­immunoprecipitation (Co­IP) and luciferase reporter assays were used to detect the interaction between SOX11 and FAK. CS reduced the invasion, migration and adhesion, and increased the apoptosis of AT2 cells. It also resulted in the downregulation of SOX11 and FAK expression in AT2 cells. The overexpression of SOX11 reversed these changes, whereas the knockdown of SOX11 aggravated the deterioration of the aforementioned biological behaviors and the apoptosis of the AT2 cells following CS. The overexpression of SOX11 upregulated the FAK and Akt expression levels, and downregulated caspase­3/8 expression, whereas the silencing of SOX11 reversed these changes following CS. Furthermore, the effects of SOX11 overexpression were inhibited by FAK antagonism. The results of Co­IP demonstrated that SOX11 and FAK were bound together, and that the expression of FAK was significantly increased in the SOX11 overexpression group. Luciferase assays revealed that the luciferase activity and the mRNA expression of FAK were significantly increased following transfection with pcDNA SOX11 and pGL3 FAK promoter. Co­IP and luciferase assays revealed that SOX11 directly regulated the expression of FAK. On the whole, the present study demonstrates that the downregulated expression of SOX11 and FAK are involved in the stretch­induced mechanical injury to AT2 cells. The overexpression of SOX11 significantly alleviates AT2 cell injury through the upregulation of FAK and Akt, and the inhibition of apoptosis. These findings suggest that the activation of SOX11 and FAK may be potential preventive and therapeutic options for ventilator­induced lung injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA