Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.208
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36083371

RESUMO

Fossil fuels are causing irreparable damage to the environment and lead to the depletion of reservoirs of coal, oil, and gas, which may give rise to the issue of energy scarcity and security. Therefore, policymakers and empirics have looked for alternative sources of energy that are affordable, reliable, and clean sources of energy. Consistent with this view, we have tried to examine the impact of eco-innovation and financial inclusion on renewable energy development in China. In order to empirically investigate, we have applied the autoregressive distributive lag model. The long-run estimates of eco-innovations are statistically significant and positive models, confirming that environmental-related innovations help increase the production of different renewable energy. Similarly, the long-run estimates of financial inclusion are positively significant, implying that an increase in financial inclusiveness intensifies the production of solar, biomass, and renewable energy in China. Generally, our findings imply that both eco-innovations and financial inclusion help increase renewable energy production in China in the long run.

2.
Infect Agent Cancer ; 17(1): 46, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057607

RESUMO

BACKGROUND: The most common type of cancer of the digestive system is hepatocellular carcinoma. In China, many patients harbour HBV. The lin28B/Let-7c/MYC axis is associated with the occurrence of many cancers. Therefore, we aimed to illuminate the function of the lin28B/Let-7c/MYC axis in hepatocellular carcinoma. We aimed to evaluate the critical involvement of lin28B and Let-7c in the carcinogenesis of human hepatocellular carcinoma (B-HCC). METHODS: Data from the GEO database were used to analyse differentially expressed genes and IRGs. A protein - protein interaction (PPI) network and Venn diagram were generated to analyse relationships. Real-time RT-PCR, Western blotting, and cell counting kit-8 assays were used to examine the association of lin28B, Let-7c, and MYC with cell proliferation. RESULTS: A total of 2552 functionally annotated differentially expressed RNAs were analysed in HBV patients from the GSE135860 database. In addition, 46 let-7c target genes were screened in HBV patients, and the interactions were analysed through PPI network analysis. The results confirmed that Let-7c and its target genes play a key role in HBV-related diseases. Next, we discovered a gradual decrease in Let-7c expression during the progression from HBV-associated chronic hepatitis (B-CH) and HBV-associated liver cirrhosis (B-LC) to B-HCC. We found evidence for a negative association between lin28B expression and Let-7c expression. The expression of MYC was obviously upregulated when Let-7c was inhibited. CONCLUSION: Our results highlight that Let-7c and lin28B participate in the carcinogenesis of HBV-associated diseases through the lin28B/Let-7c/MYC axis.

3.
Front Neurol ; 13: 813207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071902

RESUMO

Introduction: Transvenous embolization (TVE) has been proven to be safe and feasible as an alternative management of brain arteriovenous malformations (AVMs). We presented four patients with a hemorrhagic brain AVM who underwent TVE and reviewed the relevant literature. Methods: Four patients underwent TVE of a hemorrhagic brain AVM in our center between July 2019 and July 2020. We retrospectively collected and analyzed the clinical and imaging data of these patients and those reported in previously published studies. Results: Four patients with a hemorrhagic brain AVM were included. Nidus sizes ranged from 0.79 to 2.56 cm. Spetzler-Martin grade ranged from grade II to grade III. The AVM nidus was located in a deep brain region in three patients. One patient underwent TVE alone and three underwent combined transarterial and transvenous approaches. Digital subtraction angiography (DSA) demonstrated complete obliteration of the vascular malformation after embolization in all four patients. Three patients were independent [modified Rankin Scale (mRS) score ≤ 2] at discharge. All four patients were independent at the last follow-up. AVM obliteration was confirmed in all four patients at the last angiographic follow-up. Conclusion: Transvenous embolization can be used as an alternative treatment for contemporary management of brain AVMs, appropriate patient selection is essential to achieve a good clinical outcome.

4.
Methods Cell Biol ; 172: 99-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064229

RESUMO

The exposure of calreticulin (CALR) on the cell surface of apoptotic cancer cells is an important "eat-me" signal that stimulates the engulfment by antigen presenting cells (APCs). When cells are exposed to immunogenic cell death (ICD) inducers, CALR translocates from the lumen of the endoplasmic reticulum (ER) to the cell surface, where it serves as a ligand for LDL-receptor-related protein 1 (LRP1, also known as CD91) expressed by dendritic cells (DCs). Surface-exposed CALR facilitates tumor antigen transfer to DCs and in turn antigen cross-presentation to cytotoxic T cells, altogether culminating in the activation of adaptive immune responses. Consistent with its role as an apical signaling event in anticancer immunity, blocking or neutralizing CALR abolishes the immune-dependent anticancer efficacy of a variety of ICD inducing anticancer agents. Recently we showed that saturating CALR receptors on DCs with abundant recombinant CALR protein, or soluble CALR secreted from cancer cells decreases the potency of ICD-mediated antitumor immune responses. Here we detail how to harness an artificially inducible release of soluble CALR from engineered cancer cells, which can blind DCs from recognizing immunogenic cancer cells, resulting in reduced anticancer immunity. This system offers precise control over the release of immunosuppressive soluble CALR, thus yielding a useful tool for the validation of ICD-inducing immunotherapies.


Assuntos
Calreticulina , Neoplasias , Calreticulina/metabolismo , Calreticulina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Linfócitos T Citotóxicos
5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(4): 545-554, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36065685

RESUMO

Objective To screen out the key genes leading to diabetic cardiomyopathy by analyzing the mRNA array associated with diabetic cardiomyopathy in the GEO database. Methods The online tool GEO2R of GEO was used to mine the differentially expressed genes (DEG) in the datasets GSE4745 and GSE5606.R was used to draw the volcano map of the DEG,and the Venn diagram was established online to identify the common DEG shared by the two datasets.The clusterProfile package in R was used for gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway enrichment of the DEG.GSEA was used for gene set enrichment analysis,and STRING for the construction of a protein-protein interaction network.The maximal clique centrality algorithm in the plug-in Cytohubba of Cytoscape was used to determine the top 10 key genes. The expression of key genes was studied in the primary cardiomyocytes of rats and compared between the normal control group and high glucose group. Results The expression of Pdk4,Ucp3,Hmgcs2,Asl6,and Slc2a4 was consistent with the array analysis results.The expression of Pdk4,Ucp3,and Hmgcs2 was up-regulated while that of Acsl6 and Slc2a4 was down-regulated in the cardiomyocytes stimulated by high glucose (25 mmol/L) for 72 h. Conclusion Pdk4,Ucp3,Hmgcs2,Asl6,and Slc2a4 may be associated with the occurrence and development of diabetic cardiomyopathy,and may serve as the potential biomarkers of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Biologia Computacional/métodos , Cardiomiopatias Diabéticas/genética , Perfilação da Expressão Gênica , Glucose , Mapas de Interação de Proteínas/genética , Ratos
6.
Environ Monit Assess ; 194(10): 737, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36068415

RESUMO

Solvents, components of pesticide emulsifiable concentrates (ECs), emit quantities of volatile organic compounds (VOCs) into the atmosphere. In the air, their active involvement in oxidative chemical reactions with oxidants exposed to ultraviolet solar radiation can result in the formation of ozone. The quantitative assessment of VOC emissions from agricultural pesticide applications remains hampered by many factors, especially the volatility coefficient of solvents in pesticides. Therefore, this study identified solvents in 20 widely used pesticide products in China. The volatility coefficients of the solvents were investigated based on a spraying test to evaluate VOC emissions from agricultural pesticide applications and their ozone formation potential (OFP). The results suggest that VOC emissions from agricultural pesticide applications amount to 0.60 Mt in 2017, with insecticides, fungicides, and herbicides contributing 0.39 Mt, 0.12 Mt, and 0.09 Mt of VOCs, respectively. Since VOC emission and maximum incremental reactivity (MIR) led to an OFP value (2.1 g ozone/g product) for insecticides, a primary consideration should be to decrease use of solvents with high volatility coefficients and large MIR values in insecticide products. This work could provide valuable insights regarding response options to reduce VOC emissions and ozone formation.


Assuntos
Poluentes Atmosféricos , Inseticidas , Ozônio , Praguicidas , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Solventes , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
7.
J Cell Mol Med ; 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071548

RESUMO

Atherosclerosis is a complex pathological process involving macrophages, endothelial cells and vascular smooth muscle cells that can lead to ischemic heart disease; however, the mechanisms underlying cell-to-cell communication in atherosclerosis are poorly understood. In this study, we focused on the role of exosomal miRNAs in crosstalk between macrophages and endothelial cells and explored the rarely studied molecular mechanisms involved. Our in vitro result showed that macrophage-derived exosomal miR-4532 significantly disrupted human umbilical vein endothelial cells (HUVECs) function by targeting SP1 and downstream NF-κB P65 activation. In turn, increased endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and decreased endothelial nitric oxide synthase (eNOS) expression in HUVECs increased attraction of macrophages, exacerbating foam cell formation and transfer of exosomal miR-4532 to HUVECs. MiR-4532 overexpression significantly promoted endothelial injury and pretreatment with an inhibitor of miR-4532 or GW4869 (exosome inhibitor) could reverse this injury. In conclusion, our data reveal that exosomes have a critical role in crosstalk between HUVECs and macrophages. Further, exosomal miR-4532 transferred from macrophages to HUVECs and targeting specificity protein 1 (SP1) may be a novel therapeutic target in patients with atherosclerosis.

8.
Front Aging Neurosci ; 14: 948696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051304

RESUMO

Accumulating evidence suggests that impairment in auditory-vocal integration characterized by abnormally enhanced vocal compensations for auditory feedback perturbations contributes to hypokinetic dysarthria in Parkinson's disease (PD). However, treatment of this abnormality remains a challenge. The present study examined whether abnormalities in auditory-motor integration for vocal pitch regulation in PD can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the left supplementary motor area (SMA). After receiving active or sham c-TBS over left SMA, 16 individuals with PD vocalized vowel sounds while hearing their own voice unexpectedly pitch-shifted two semitones upward or downward. A group of pairwise-matched healthy participants was recruited as controls. Their vocal responses and event-related potentials (ERPs) were measured and compared across the conditions. The results showed that applying c-TBS over left SMA led to smaller vocal responses paralleled by smaller P1 and P2 responses and larger N1 responses in individuals with PD. Major neural generators of reduced P2 responses were located in the right inferior and medial frontal gyrus, pre- and post-central gyrus, and insula. Moreover, suppressed vocal compensations were predicted by reduced P2 amplitudes and enhanced N1 amplitudes. Notably, abnormally enhanced vocal and P2 responses in individuals with PD were normalized by c-TBS over left SMA when compared to healthy controls. Our results provide the first causal evidence that abnormalities in auditory-motor control of vocal pitch production in PD can be modulated by c-TBS over left SMA, suggesting that it may be a promising non-invasive treatment for speech motor disorders in PD.

9.
J Oncol ; 2022: 8035083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052282

RESUMO

Background: Circular RNAs (circRNAs) regulate complex functional processes and play crucial roles in cancer development and progression. It was reported that circKIF4 regulates the progression of triple-negative breast cancer (TNBC). This study evaluates the role of circKIF4 in breast cancer distant metastasis and metabolic reprogramming. Methods: RT-qPCR was performed to verify the expression of circKIF4A in breast cancer, liver metastatic tissues, and cell lines. The function of circKIF4A in metastasis was evaluated both in vitro and in vivo through a series of experiments, including cell migration and glucose intake experiments. Additionally, we conducted molecular experiments to clarify the regulatory role of circKIF4A. We then conducted a Luciferase reporter assay and an RNA immunoprecipitation assay to identify the molecular interactions between circKIF4A and miRNA. Results: circKIF4A was overexpressed in breast cancer cell lines and tissues, inhibiting its expression and suppressing breast cancer growth and metastasis. Interestingly, we observed that circKIF4A reprogrammed the glucose metabolism of breast cancer, and silencing circKIF4A greatly affected glucose uptake and lactate production in breast cancer cells. miR-335 can be sponged by circKIF4A, which affected the expression of ALDOA/OCT4 protein and regulated HK2/PKM2 expression. Conclusions: This study demonstrated that the circKIF4A-miR-335-OCT4/ALDOA-HK2/PKM2 axis is critical to breast cancer metabolic reprogramming, indicating that this axis could be a novel therapeutic target for the treatment of liver metastasis of breast cancer.

10.
Small Methods ; : e2200484, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047656

RESUMO

Developing efficient electrocatalysts at ampere-scale current densities is of paramount importance to advance industrial applications of alkaline water electrolysis. Herein, a hierarchical nanostructured electrocatalyst with two-dimensional Co(OH)x nanosheets grown on one-dimensional NiMoOx nanorods over three-dimensional porous Ni foam substrate is designed. The resulting catalyst delivers ultrahigh hydrogen evolution reaction (HER) activity in the alkaline solution, which only requires overpotentials of 185 and 332 mV to achieve the current densities of -500 and -1000 mA cm-2 in 1.0 m KOH, respectively, and shows robust stability at -1000 mA cm-2 for 11 days. The unique 1D @ 2D hierarchical structures with abundant hetero-interfaces can not only expose sufficient active sites but also boost alkaline HER kinetics with fast water dissociation ability. This present work may pave a new insight to design efficient electrocatalysts with hierarchical structures for alkaline HER with industry-level current density and stability.

11.
Plant Cell ; 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. Nitrate Transporter 1/Peptide Transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labelled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologues SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.

12.
Oxid Med Cell Longev ; 2022: 4362317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082082

RESUMO

Premature ovarian failure (POF) is the leading cause of female infertility, and there is no optimal treatment or medication available currently. For POF, electroacupuncture (EA) has been considered a promising therapeutic approach, but the mechanism for this is not clear. In this study, we explored the effects of EA (CV4, ST36, and SP6) on oxidative stress and intestinal microbiota of high-fat and high-sugar- (HFHS-) induced POF mice. The development of mice follicles was observed by hematoxylin and eosin (HE) staining. The serum levels of estrone (E1), estrogen (E2), estriol (E3), and 21-deoxycortisol (21D) were measured by the HPLC-MS/MS method. The concentrations of Fe2+, superoxide dismutase (SOD), hydroxyl radical (·OH), glutathione (GSH), superoxide anion, and malondialdehyde (MDA) were measured by spectrophotometry. The 16S-rDNA sequencing was used to measure many parameters related to the host gut bacteriome and mycobiome composition, relative abundance, and diversity. mRNA expression levels of ferroptosis-related genes were determined by RT-qPCR. After 4 weeks of EA intervention in POF mice, mature follicles were increased and the levels of the sex hormone were improved. SOD activities, antisuperoxide activities, and GSH increased while MDA, ·OH, and Fe2+ decreased. In addition, EA also altered the intestinal microbiota. These results reveal that EA can effectively inhibit ovarian oxidative stress and the accumulation of Fe2+ in POF mice. It may be that the alteration in the intestinal microbiota is one of the potential mechanisms of EA treatment. These findings suggest that EA has clinical potential as a safe treatment for POF.


Assuntos
Eletroacupuntura , Microbioma Gastrointestinal , Insuficiência Ovariana Primária , Animais , Feminino , Glutationa/metabolismo , Humanos , Camundongos , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem
13.
J Ethnopharmacol ; 298: 115679, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058481

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shi Wei Ru Xiang powder (SWR) is a traditional Tibetan medicinal formula with the effect of dispelling dampness and dispersing cold. In clinical practice, SWR is generally used for the treatment of hyperuricemia (HUA). However, its exact pharmacological mechanism remains unclear. AIMS OF THE STUDY: To preliminarily elucidate the regulatory effects and possible mechanisms of SWR on hyperuricemia using network pharmacology and experimental validation. MATERIALS AND METHODS: A mouse model of hyperuricemia was used to evaluate the alleviating effect of SWR on hyperuricemia. The major components of SWR were acquired by UPLC-Q/TOF-MS. The potential molecular targets and associated signaling pathways were predicted through network pharmacology. The mechanism of action of SWR in ameliorating hyperuricemia was further investigated by pharmacological evaluation. RESULTS: Mice with hyperuricemia and renal dysfunction were ameliorated by SWR. The 36 components of SWR included phenolic acids, terpenoids, alkaloids and flavonoids were identified. Network pharmacological analysis showed the involvement of the above compounds, and 115 targets were involved to treat hyperuricemia, involving multiple biological processes and different signaling pathways. Pharmacological experiments validated that SWR ameliorated hyperuricemic nephropathy in mice by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, nuclear factor kappaB (NF-κB) signaling pathway and NOD-like receptor signaling pathway. CONCLUSION: MAPK signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway play important roles in the therapeutic effects of SWR on hyperuricemia.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Animais , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Camundongos , NF-kappa B , Proteínas NLR , Farmacologia em Rede , Pós/uso terapêutico
14.
Microb Cell Fact ; 21(1): 184, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076243

RESUMO

BACKGROUND: Efficient upgrading of inferior agro-industrial resources and production of bio-based chemicals through a simple and environmentally friendly biotechnological approach is interesting Lactobionic acid is a versatile aldonic acid obtained from the oxidation of lactose. Several microorganisms have been used to produce lactobionic acid from lactose and whey. However, the lactobionic acid production titer and productivity should be further improved to compete with other methods. RESULTS: In this study, a new strain, Pseudomonas fragi NL20W, was screened as an outstanding biocatalyst for efficient utilization of waste whey to produce lactobionic acid. After systematic optimization of biocatalytic reactions, the lactobionic acid productivity from lactose increased from 3.01 g/L/h to 6.38 g/L/h in the flask. In batch fermentation using a 3 L bioreactor, the lactobionic acid productivity from whey powder containing 300 g/L lactose reached 3.09 g/L/h with the yield of 100%. Based on whole genome sequencing, a novel glucose dehydrogenase (GDH1) was determined as a lactose-oxidizing enzyme. Heterologous expression the enzyme GDH1 into P. putida KT2440 increased the lactobionic acid yield by 486.1%. CONCLUSION: This study made significant progress both in improving lactobionic acid titer and productivity, and the lactobionic acid productivity from waste whey is superior to the ever reports. This study also revealed a new kind of aldose-oxidizing enzyme for lactose oxidation using P. fragi NL20W for the first time, which laid the foundation for further enhance lactobionic acid production by metabolic engineering.


Assuntos
Queijo , Pseudomonas fragi , Dissacarídeos , Fermentação , Lactose/metabolismo , Oxirredução , Pseudomonas fragi/metabolismo , Soro do Leite/metabolismo
15.
BMC Pulm Med ; 22(1): 354, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36117164

RESUMO

BACKGROUND: Sporadic lymphangioleiomyomatosis (S-LAM) is a rare neoplasm with heterogeneous clinical features that is conventionally considered to be related to TSC2. This study serves to elucidate the mutation landscape and potential correlation between S-LAM genomic profiles and clinical phenotypes. METHODS: Genomic profiles of 22 S-LAM patients were obtained by sequencing genomic DNA and cell-free DNA from various specimens using an NGS (next-generation sequencing)-based tumor-driver gene panel. Detected mutations were summarized. Symptoms, serum vascular endothelial growth factor D (VEGF-D) values, pulmonary function, and six-minute walk distance (6MWD) were compared among groups with different TSC2 status and genotypes to analyze genotype-phenotype correlations. RESULTS: 67 Variants in 43 genes were detected, with a TSC2 mutation detection rate of 68.2%. The TSC2 detection rate was similar in specimens obtained either through transbronchial lung biopsy (TBLB) or surgical lung biopsy (70.0% vs. 69.2%, p > 0.05). A novel mutation in VEZF1 (c.A659G) was detected in four participants and may represent a mild disease state. TSC2 mutation was significantly related to a shorter 6MWD (p < 0.05), and a higher percentage of VEGF-D over 800 pg/mL (p < 0.05); stop-gain mutation was significantly related to a higher prevalence of pneumothorax. CONCLUSIONS: Tumor-driver mutations in genes other than TSC2 may have a role in S-LAM, and TBLB specimens are practical alternatives for genomic analysis. TSC2 mutation detectability and types are related to the disease severity and phenotypes of S-LAM.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Linfangioleiomiomatose , Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Humanos , Neoplasias Pulmonares/genética , Linfangioleiomiomatose/genética , Mutação , Fatores de Transcrição/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Fator D de Crescimento do Endotélio Vascular/genética
16.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080387

RESUMO

A robust superhydrophobic brass mesh was fabricated based on a low-energy surface and a roughness on the nano/micro-meter scale. It was carried out by the forming of hydroxyapatite (HP) coatings on its surface through a constant current electro-deposition process, followed by immersion in fluoroalkylsilane solution. Surface morphology, composition and wetting behavior were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high speed camera, and contact angle goniometer. Under optimal conditions, the resulting brass mesh exhibited superhydrophobicity, excellent anti-corrosion (η = 91.2%), and anti-scaling properties. While the surfactant liquid droplets of tetradecyl trimethyl ammonium bromide (TTAB) with different concentration were dropped on the superhydrophobic surface, maximum droplet rebounding heights and different contact angles (CAs) were observed and measured from side-view imaging. The plots of surfactant-concentration-maximum bounding height/CA were constructed to determine its critical-micelle-concentration (CMC) value. Close CMC results of 1.91 and 2.32 mM based on the determination of maximum rebounding height and CAs were obtained. Compared with its theoretical value of 2.1 mM, the relative errors are 9% and 10%, respectively. This indicated that the novel application based on the maximum rebounding height could be an alternative approach for the CMC determination of other surfactants.


Assuntos
Durapatita , Tensoativos , Cobre , Durapatita/química , Propriedades de Superfície , Tensoativos/química , Molhabilidade , Zinco
17.
Artigo em Inglês | MEDLINE | ID: mdl-36066653

RESUMO

By interacting with the receptor on the host cells membrane, Mycoplasma genitalium, a prokaryotic bacterium primarily transmitted through sexual contact, can adhere to and even enter cells. The adhesion protein of M. genitalium (MgPa) plays a critical function in the adhering and subsequent invasion into host cells. Our prior studies verified that cyclophilin A (CypA) was the receptor of MgPa on human urethral epithelial cells (SV-HUC-1) membrane and could induce pro-inflammatory cytokines production through the CypA-CD147-ERK-NF-κB pathway. This research aims to understand how MgPa interacts with its membrane receptor CypA to cause apoptosis in host cells. We employed flow cytometry to see if MgPa prevents or enhances apoptosis of SV-HUC-1 cells. The apoptosis-related proteins such as Bax, caspase-3, and cleaved caspase-3 were assayed using Western blot. Results suggested that MgPa could inhibit the apoptosis of SV-HUC-1 cells. And we demonstrated that interference with the expression of CypA or CD147 significantly reversed the inhibitory effect of MgPa on SV-HUC-1 cells apoptosis, indicating that MgPa inhibited urothelial cells apoptosis through CypA/CD147. Furthermore, we discovered that MgPa regulates the PI3K/Akt/NF-κB pathway through CypA/CD147 to inhibit SV-HUC-1 cells apoptosis. Ultimately, the inhibitory effect of MgPa on the apoptosis of the urothelial epithelial cells extracted from CypA-knockout mice was validated by Annexin V/PI assay. The results corroborated that MgPa could also inhibit mouse urothelial epithelial cells apoptosis. In summary, we demonstrated that MgPa could inhibit SV-HUC-1 cells apoptosis via regulating the PI3K/Akt/NF-κB pathway through CypA/CD147, providing experimental evidence for elucidating the survival strategies of M. genitalium in host cells. KEY POINTS: • M. genitalium protein of adhesion inhibited human urethral epithelial cells apoptosis through CypA-CD147 activating the signal pathway of PI3K/Akt/NF-κB • The knockdown of CypA and CD147 could downregulate the M. genitalium -activated PI3K/Akt/NF-κB pathway in SV-HUC-1 cells • MgPa could inhibit the apoptosis of normal C57BL mouse primary urethral epithelial cells, but not for CypA-knockout C57BL mouse primary urethral epithelial cells.

18.
Adv Sci (Weinh) ; : e2203031, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36057999

RESUMO

Iron is an essential element for various cellular metabolism. Cancer cells also have high requirement of iron in their proliferation, invasion, and metastasis processes. Alendronate (ALN), a kind of FDA-approved bisphosphonates with metal-chelating capability, is initially certified to selectively bind to intracellular Fe3+ theoretically and experimentally in this study. Hence, CaALN iron nanochelator is rationally designed to kill cancer cells by synergism of Fe-depletion and calcium accumulation. In vitro experiments and RNA sequencing analysis indicate that CaALN nanomedicine inhibits the proliferation of cancer cells by depleting Fe, interfering with DNA replication, and triggering intracellular reactive oxygen species (ROS). Meanwhile, released Ca2+ and ROS mutually promote and induce damage of cellular macromolecules, which leads to mitochondrial apoptosis of cancer cells. In an intraperitoneal disseminated mouse model with the human ovarian cancer cells SKOV3, CaALN nanoparticles selectively accumulate in tumor tissues and result in significant retardation of tumor growth and ascites formation. The mean survival time of SKOV3-bearing mice in treatment group is prolonged from 33 to 90 d. These results indicate that the alendronate-originated iron chelator can serve as an efficient strategy for the treatment of peritoneal carcinomatosis.

19.
New Phytol ; 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068958

RESUMO

Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), leads to widespread yield loss and quality decline in cucumber. However, the molecular mechanisms underlying Foc resistance remain poorly understood. We report the mapping and functional characterization of CsChi23, encoding a cucumber class I chitinase with antifungal properties. We assessed sequence variations at CsChi23 and the associated defense response against Foc. We functionally characterized CsChi23 using transgenic assay and expression analysis. The mechanism regulating CsChi23 expression was assessed by genetic and molecular approaches. CsChi23 was induced by Foc infection, which led to rapid up-regulation in resistant cucumber lines. Overexpressing CsChi23 enhanced fusarium wilt resistance and reduced fungal biomass accumulation, whereas silencing CsChi23 causes loss of resistance. CsHB15, a homeodomain leucine zipper (HD-Zip) III transcription factor, was found to bind to the CsChi23 promoter region and activate its expression. Furthermore, silencing of CsHB15 reduces CsChi23 expression. A single nucleotide polymorphism variation -400bp upstream of CsChi23 abolished the HD-Zip III binding site in susceptible cucumber line. Collectively, our study indicates that CsChi23 is sufficient to enhance fusarium wilt resistance and reveals a novel function of an HD-Zip III transcription factor in regulating chitinase expression in cucumber defense against fusarium wilt.

20.
J Virol ; : e0067822, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069550

RESUMO

The receptor of the subgroup A avian leukosis virus (ALV-A) in chicken is Tva, which is the homologous protein of human CD320 (huCD320), contains a low-density lipoprotein (LDL-A) module and is involved in the uptake of transcobalamin bound vitamin B12/cobalamin (Cbl). To map the functional determinants of Tva responsible for ALV-A receptor activity, a series of chimeric receptors were created by swapping the LDL-A module fragments between huCD320 and Tva. These chimeric receptors were then used for virus entry and binding assays to map the minimal ALV-A functional domain of Tva. The results showed that Tva residues 49 to 71 constituted the minimal functional domain that directly interacted with the ALV-A gp85 protein to mediate ALV-A entry. Single-residue substitution analysis revealed that L55 and W69, which were spatially adjacent on the surface of the Tva structure, were key residues that mediate ALV-A entry. Structural alignment results indicated that L55 and W69 substitutions did not affect the Tva protein structure but abolished the interaction force between Tva and gp85. Furthermore, substituting the corresponding residues of huCD320 with L55 and W69 of Tva converted huCD320 into a functional receptor of ALV-A. Importantly, soluble huCD320 harboring Tva L55 and W69 blocked ALV-A entry. Finally, we constructed a Tva gene-edited cell line with L55R and W69L substitutions that could fully resist ALV-A entry, while Cbl uptake was not affected. Collectively, our findings suggested that amino acids L55 and W69 of Tva were key for mediating virus entry. IMPORTANCE Retroviruses bind to cellular receptors through their envelope proteins, which is a crucial step in infection. While most retroviruses require two receptors for entry, ALV-A requires only one. Various Tva alleles conferring resistance to ALV-A, including Tvar1 (C40W substitution), Tvar2 (frame-shifting four-nucleotide insertion), Tvar3, Tvar4, Tvar5, and Tvar6 (deletion in the first intron), are known. However, the detailed entry mechanism of ALV-A in chickens remains to be explored. We demonstrated that Tva residues L55 and W69 were key for ALV-A entry and were important for correct interaction with ALV-A gp85. Soluble Tva and huCD320 harboring the Tva residues L55 and W69 effectively blocked ALV-A infection. Additionally, we constructed gene-edited cell lines targeting these two amino acids, which completely restricted ALV-A entry without affecting Cbl uptake. These findings contribute to a better understanding of the infection mechanism of ALV-A and provided novel insights into the prevention and control of ALV-A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...