Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.804
Filtrar
1.
Nano Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954740

RESUMO

Nanosized ultrafine particles (UFPs) from natural and anthropogenic sources are widespread and pose serious health risks when inhaled by humans. However, tracing the inhaled UFPs in vivo is extremely difficult, and the distribution, translocation, and metabolism of UFPs remain unclear. Here, we report a label-free, machine learning-aided single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach for tracing the exposure pathways of airborne magnetite nanoparticles (MNPs), including external emission sources, and distribution and translocation in vivo using a mouse model. Our results provide quantitative analysis of different metabolic pathways in mice exposed to MNPs, revealing that the spleen serves as the primary site for MNP metabolism (84.4%), followed by the liver (11.4%). The translocation of inhaled UFPs across different organs alters their particle size. This work provides novel insights into the in vivo fate of UFPs as well as a versatile and powerful platform for nanotoxicology and risk assessment.

2.
J Colloid Interface Sci ; 674: 778-790, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38955009

RESUMO

The CO preferential oxidation reaction (CO-PROX) is an effective strategy to remove residual poisonous CO in proton exchange membrane fuel cells, in which oxygen vacancies play a critical role in CO adsorption and activation. Herein, a series of CuO/CeO2 catalysts derived from Ce-MOFs precursors were synthesized using different organic ligands via the hydrothermal method and the CO-PROX performance was investigated. The CuO/CeO2-135 catalyst derived from homophthalic tricarboxylic acid (1,3,5-H3BTC) exhibited superior catalytic performance with 100 % CO conversion at a relatively low temperature (T100% = 100 °C), with a wide reaction temperature range and excellent stability. The superior catalytic properties were attributed to the structural improvements provided by the 1,3,5-H3BTC precursors and the promotional effects of oxygen vacancies. Additionally, in-situ Raman spectroscopy was performed to verify the dynamic roles of oxygen vacancies for CO adsorption and activation, while in-situ DRIFTS analysis revealed key intermediates in the CO-PROX reaction, shedding light on the mechanistic aspects of the catalytic process. This work not only demonstrates insights into the effective CuO/CeO2 catalysts for CO preferential oxidation, but also provides a feasible way to synthesize MOF-derived catalysts.

3.
J Colloid Interface Sci ; 674: 834-840, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955014

RESUMO

Urea electrosynthesis has appeared to meet the nitrogen cycle and carbon neutrality with energy-saving features. Copper can co-electrocatalyze among CO2 and nitrogen species to generate urea, however developing effective electrocatalysts is still an obstacle. Here, we developed a nitrogen-doped porous carbon loaded with FeCu clusters that convert CO2 and NO3- into urea, with the highest Faradaic efficiency of 39.8 % and yield rate of 1024.6 µg h-1 mgcat.-1, under optimized ambient conditions, exceeding that at the Fe or Cu homogeneous sites. Furthermore, a favorable CN coupling pathway originates from *NHCO and *NHCONO two intermediates with lower free energy barriers on FeCu dual active sites are verified through in-situ Fourier transform infrared spectroscopy and theoretical calculations. This research might provide deep insights into coupling mechanisms and investigation of efficient catalysts for green urea production.

4.
RSC Adv ; 14(29): 20837-20855, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38952933

RESUMO

Porphyrin is a typical tetrapyrrole chromophore-based pigment with a special electronic structure and functionalities, which is frequently introduced into various porous organic polymers (POPs). Porphyrin-based POPs are widely used in various fields ranging from environmental and energy to biomedicine-related fields. Currently, most porphyrin-based POPs are prepared via the copolymerization of specific-group-functionalized porphyrins with other building blocks, in which the tedious and inefficient synthesis procedure for the porphyrin greatly hinders the development of such materials. This review aimed to summarize information on porphyrin-based POPs synthesized using the Alder-Longo method, thereby skipping the complex synthesis of porphyrin-bearing monomers, in which the porphyrin macrocycles are formed directly via the cyclic tetramerization of pyrrole with monomers containing multiple aldehyde groups during the polymerization process. The representative applications of porphyrin-based POPs derived using the Alder-Longo method are finally introduced, which pinpoints a clear relationship between the structure and function from the aspect of the building blocks used and porous structures. This review is therefore valuable for the rational design of efficient porphyrin-based porous organic polymer systems that may be utilized in various fields from energy-related conversion/storage technologies to biomedical science.

5.
Meat Sci ; 216: 109585, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959640

RESUMO

In this study, the effect of sodium alginate and quaternized chitosan bis-polysaccharide-based shell transport curcumin nano-emulsions (Cur@QCS/SA) on the microbiological, physicochemical properties, quality characteristics of Harbin red sausage during storage is investigated. According to the microbiological results, the shelf life of Harbin red sausage is extended from 3 d to 6 d by adding 0.15% Cur@QCS/SA, and Bacillus is the most predominant bacterial before 6 d. Additionally, the physicochemical properties change significantly, the pH, weight loss (WL), water holding capacity (WHC), water activity (aw), L*, and a* of red sausage decrease gradually with the extension of storage time, as well as b*, lipid oxidation, proteolysis increase significantly (P < 0.05). Secondly, it is found that 0.15% treatment group can better maintain the quality characteristics of Harbin red sausage according to texture profile analysis (TPA), electronic nose (E-nose), and electronic tongue (E-tongue) (P < 0.05). This study provides a new way for nano-emulsions in food applications and a new option for the preservation of Harbin red sausage as well as other low-temperature meat products.

6.
Food Chem ; 457: 140214, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959683

RESUMO

This study investigated the gelling properties, rheological behaviour, and microstructure of heat-induced, low-salt myofibrillar protein (MP) gels containing different levels (2%, 4%, 6%, and 8%, w/w) of cross-linked (CTS) or acetylated (ATS) tapioca starch. The results indicated that either CTS or ATS significantly enhanced the gel strength and water-holding capacity of low-salt MP gels (P < 0.05), an outcome verified by the rheological behaviour test results under different modes. Furthermore, iodine-staining images indicated that the MP-dominated continuous phase gradually transited to a starch-dominated phase with increasing CTS or ATS levels, and 4% was the critical point for this phase transition. In addition, hydrophobic interactions and disulphide bonds constituted the major intermolecular forces of low-salt MP gels, effectively promoting phase transition. In brief, modified tapioca starches possess considerable potential application value in low-salt meat products.

7.
Front Public Health ; 12: 1386500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966703

RESUMO

Background: The aim of this study was to classify distinct subgroups of adolescents based on the severity levels of their mobile phone addiction and to investigate how these groups differed in terms of their psychosocial characteristics. We surveyed a total of 2,230 adolescents using three different questionnaires to assess the severity of their mobile phone addiction, stress, anxiety, depression, psychological resilience, and personality. Latent class analysis was employed to identify the subgroups, and we utilized Receiver Operating Characteristic (ROC) curves and multinomial logistic regression for statistical analysis. All data analyses were conducted using SPSS 26.0 and Mplus 8.5. Methods: We classified the subjects into subgroups based on their mobile phone addiction severity, and the results revealed a clear pattern with a three-class model based on the likelihood level of mobile phone addiction (p < 0.05). We examined common trends in psychosocial traits such as age, grade at school, parental education level, anxiety levels, and resilience. ROC analysis of sensitivity versus 1-specificity for various mobile phone addiction index (MPAI) scores yielded an area under the curve (AUC) of 0.893 (95% CI, 0.879 to 0.905, p < 0.001). We also determined diagnostic value indices for potential cutoff points ranging from 8 to 40. The optimal cutoff value for MPAI was found to be >14, which corresponded to the maximum Youden index (Youden index = 0.751). Results: The latent classification process in this research confirmed the existence of three distinct mobile phone user groups. We also examined the psychosocial characteristics that varied in relation to the severity levels of addiction. Conclusion: This study provides valuable insights into the categorization of adolescents based on the severity of mobile phone addiction and sheds light on the psychosocial characteristics associated with different addiction levels. These findings are expected to enhance our understanding of mobile phone addiction traits and stimulate further research in this area.


Assuntos
Comportamento Aditivo , Telefone Celular , Análise de Classes Latentes , Resiliência Psicológica , Humanos , Adolescente , Masculino , Feminino , China , Comportamento Aditivo/psicologia , Telefone Celular/estatística & dados numéricos , Inquéritos e Questionários , Ansiedade/psicologia , Depressão/psicologia , Depressão/epidemiologia , Estresse Psicológico/psicologia , Comportamento do Adolescente/psicologia , Curva ROC
8.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969410

RESUMO

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Assuntos
Cromo , Limite de Detecção , Pirróis , Poluentes Químicos da Água , Cromo/análise , Pirróis/química , Poluentes Químicos da Água/análise , Cetonas/química , Cetonas/análise , Água/química
9.
Eur J Pain ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982797

RESUMO

BACKGROUND: The current analgesics often prevent patients from getting effective treatment due to their adverse effects. Cannabidiol (CBD) is well tolerated, has few side effects and has been extensively investigated in analgesia. However, its oral bioavailability is extremely low. In order to solve this problem, we developed the cannabidiol nanocrystals (CBD-NC) in the earlier stage. METHODS: In this study, we evaluated the nociceptive behaviours associated with neuropathic pain (NP) induced by the spared nerve injury (SNI) model. Assessment of pain threshold was evaluated by paw withdraw threshold (PWT) and paw withdrawal latency (PWL). The improving effect on the motor dysfunction was determined by rota-rod testing. To assess the neuroprotective effect, nerve demyelination and expression of peripheral myelin protein PMP22 were measured with myelin sheath staining and western blotting. Protein expressions in microglia of spinal cord were tested by western blot to explore the underlying mechanism. RESULTS: Compared with the CBD oil solution, CBD-NC significantly reduced mechanical allodynia and thermal hyperalgesia in rats. CBD-NC could improve motor dysfunction induced by SNI in rats, significantly reverse the demyelination and increase the expression of the marker protein of peripheral myelin. Underlying spinal analgesic mechanism of microglia and related factors were preliminarily confirmed. CONCLUSIONS: CBD-NC administration is an effective treatment for NP associated with SNI, and the analgesic effect of CBD-NC was significantly better than that of CBD oil sol. By contrast, CBD-NC has a fast-acting and long-term effect in the treatment of NP. Our study further supports the potential therapeutic effect of CBD-NC on NP. SIGNIFICANCE: The absolute bioavailability of the CBD-NC intramuscular injection formulation can reach 203.31%, which can solve the problem of low oral bioavailability. This research evaluated the therapeutic effect of CBD-NC on NP associated with the SNI model for the first time. All available date showed that whatever the analgesic or neuroprotective effect of CBD-NC, it was significantly better than that of CBD oil sol., which was consistent with the results of the pharmacokinetic. This research supports the initiation of more trials testing the efficacy of CBD-NC for treating NP.

11.
New Phytol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992951

RESUMO

Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.

12.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975331

RESUMO

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Assuntos
Enzima de Conversão de Angiotensina 2 , Autopsia , COVID-19 , SARS-CoV-2 , Serina Endopeptidases , Língua , Tropismo Viral , Humanos , COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Língua/virologia , Língua/patologia , Masculino , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Pessoa de Meia-Idade , Serina Endopeptidases/metabolismo , Glândulas Salivares/virologia , Glândulas Salivares/patologia , Idoso , Papilas Gustativas/virologia , Papilas Gustativas/patologia , Receptores Virais/metabolismo
13.
BMC Neurol ; 24(1): 241, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992582

RESUMO

BACKGROUND: Pure red cell aplasia (PRCA) in neuromyelitis optica spectrum disorder (NMOSD) has not been reported before. This study presents a patient with NMOSD who developed PRCA. CASE PRESENTATION: A 54-year-old female was admitted in January 2023 for dysuria and progressive numbness and weakness of lower limbs. She had difficulty standing and walking in a straight line. Both lower limbs were positive for the Babinski and Chaddock signs. MRI showed abnormal signals in the spinal cord. Aquaporin-4-IgG (AQP-4-IgG) was positive (1:320), and NMOSD was confirmed. Intravenous immunoglobulin and methylprednisolone were given, and the symptoms improved. She received maintenance treatment with methylprednisolone tablets, and the dosage was gradually reduced. She was readmitted for fatigue, palpitations, and shortness of breath in May 2023. Bone marrow aspiration and biopsy showed elevated erythroid precursors and erythroid hypoplasia, with normal megakaryocytes and myeloid precursors. Chest CT showed no mediastinal lymph node enlargement or thymoma. PRCA secondary to NMOSD was diagnosed. Recombinant human erythropoietin was given. Her condition improved after 1.5 months, as indicated by blood cell count and imaging. CONCLUSIONS: This case suggests that PRCA can be secondary to NMOSD. A comprehensive immune function and bone marrow evaluation might be necessary if abnormal blood cells are found while managing NMOSD.


Assuntos
Neuromielite Óptica , Aplasia Pura de Série Vermelha , Humanos , Feminino , Neuromielite Óptica/complicações , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/diagnóstico por imagem , Pessoa de Meia-Idade , Aplasia Pura de Série Vermelha/complicações , Aplasia Pura de Série Vermelha/diagnóstico , Aplasia Pura de Série Vermelha/tratamento farmacológico , Aquaporina 4/imunologia
14.
J Colloid Interface Sci ; 675: 772-782, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39002228

RESUMO

ZnxCd1-xS photocatalysts have been widely investigated due to their diverse morphologies, suitable band gaps/band edge positions, and high electronic mobility. However, the sluggish charge separation and severe charge recombination impede the application of ZnxCd1-xS for hydrogen evolution reaction (HER). Herein, doping of phosphorus (P) atoms into Zn0.3Cd0.7S has been implemented to elevate S vacancies concentration as well as tune its Fermi level to be located near the impurity level of S vacancies, prolonging the lifetime of photogenerated electrons. Moreover, P doping induces a hybridized state in the bandgap, leading to an imbalanced charge distribution and a localized built-in electric field for effective separation of photogenerated charge carriers. Further construction of intimate heterojunctions between P-Zn0.3Cd0.7S and MoS2 accelerates surface redox reaction. Benefiting from the above merits, 1 % MoS2/P-Zn0.3Cd0.7S exhibits a high hydrogen production rate of 30.65 mmol·g-1·h-1 with AQE of 22.22 % under monochromatic light at 370 nm, exceeding most ZnxCd1-xS based photocatalysts reported so far. This work opens avenues to fabricate examplary photocatalysts for solar energy conversion and beyond.

15.
Food Chem ; 459: 140255, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38986201

RESUMO

This study investigated the effects of two forms of curdlan, namely curdlan thermoreversibility (CT) and curdlan powder (CP), on in vitro digestion and viscoelastic properties of myofibrillar protein (MP). As the level of curdlan (0.1-0.5%) increased, pepsin digestibility and pancreatin digestibility significantly decreased, active sulfhydryl group also decreased, while surface hydrophobicity and total sulfhydryl groups increased. Meanwhile, curdlan enhanced the secondary and tertiary structures of MP. As the pepsin digest, α-helix gradually transformed into random coil. Furthermore, the viscosity, storage modulus (G") and loss modulus (G') increased with the CT or CP addition. After in vitro digestion, the viscoelasticity significantly decreased with a dose-response. Molecular dynamics simulations showed hydrogen bond formation (2.86 on average) between MP and curdlan contributing to reduced radius of gyration and solvent accessible surface area. Overall, this study highlighted curdlan as a promising ingredient to modulate structural properties and digestibility of MP, especially in pre-hydrated (CT) groups.

16.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000403

RESUMO

Due to the increase in nanoplastics (NPs) abundance in aquatic environments, their effects on phytoplankton have aroused large research attention. In this study, 100 nm sized polystyrene NPs were chosen to investigate their effecting performance and mechanisms on a typical dinoflagellates Alexandrium tamarense. The results indicated the population growth and photosynthetic efficiencies of A. tamarense were significantly inhibited by NPs exposure, as well as the increase in cellular total carotenoids and paralytic shellfish toxins (PSTs). Meanwhile, the cellar ROS levels increased, corresponding to the increased activities or contents of multiple antioxidant components, including SOD, CAT, GPX, GR, GSH and GSSG. The transcriptional results support the physiological-biochemical results and further revealed the down-regulation of genes encoding the light reaction centers (PSI and PSII) and up-regulation of genes encoding the antioxidant components. Up-regulation of genes encoding key enzymes of the Calvin cycle and glycolytic pathway together with the TCA cycle could accelerate organic carbon and ATP production for A. tamarense cells resistant to NPs stress. Finally, more Glu and acetyl-CoA produced by the enhanced GSH cycle and the glycolytic pathway, respectively, accompanied by the up-regulation of Glu and Arg biosynthesis genes supported the increase in the PST contents under NPs exposure. This study established a data set involving physiological-biochemical changes and gene information about marine dinoflagellates responding to NPs, providing a data basis for further evaluating the ecological risk of NPs in marine environments.


Assuntos
Dinoflagellida , Fotossíntese , Poliestirenos , Dinoflagellida/metabolismo , Dinoflagellida/efeitos dos fármacos , Poliestirenos/química , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Toxinas Marinhas , Microplásticos/toxicidade
17.
J Cell Mol Med ; 28(13): e18505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001579

RESUMO

Hypoxia-ischaemia (HI) can induce the death of cerebrovascular constituent cells through oxidative stress. Hydrogen is a powerful antioxidant which can activate the antioxidant system. A hypoxia-ischaemia brain damage (HIBD) model was established in 7-day-old SD rats. Rats were treated with different doses of hydrogen-rich water (HRW), and brain pericyte oxidative stress damage, cerebrovascular function and brain tissue damage were assessed. Meanwhile, in vitro-cultured pericytes were subjected to oxygen-glucose deprivation and treated with different concentrations of HRW. Oxidative injury was measured and the molecular mechanism of how HRW alleviated oxidative injury of pericytes was also examined. The results showed that HRW significantly attenuated HI-induced oxidative stress in the brain pericytes of neonatal rats, partly through the Nrf2-HO-1 pathway, further improving cerebrovascular function and reducing brain injury and dysfunction. Furthermore, HRW is superior to a single-cell death inhibitor for apoptosis, ferroptosis, parthanatos, necroptosis and autophagy and can better inhibit HI-induced pericyte death. The liver and kidney functions of rats were not affected by present used HRW dose. This study elucidates the role and mechanism of hydrogen in treating HIBD from the perspective of pericytes, providing new theoretical evidence and mechanistic references for the clinical application of hydrogen in neonatal HIE.


Assuntos
Animais Recém-Nascidos , Encéfalo , Hidrogênio , Hipóxia-Isquemia Encefálica , Estresse Oxidativo , Pericitos , Ratos Sprague-Dawley , Animais , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Hidrogênio/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Ratos , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Antioxidantes/farmacologia
18.
Meat Sci ; 217: 109595, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39004037

RESUMO

The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.

19.
Small ; : e2403399, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045897

RESUMO

Ammonia (NH3) synthesis via the nitrate reduction reaction (NO3RR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NO3RR performance under high current density. Herein, it is shown that boron-doped Ti3C2Tx MXene nanosheets can highly efficiently catalyze the conversion of NO3RR-to-NH3 at ambient conditions, showing a maximal NH3 Faradic efficiency of 91% with a peak yield rate of 26.2 mgh-1 mgcat. -1, and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine Ti3C2Tx MXene. More importantly, when tested in a flow cell, the designed catalyst delivers a current density of ‒1000 mA cm-2 at a low potential of ‒1.18 V versus the reversible hydrogen electrode and maintains a high NH3 selectivity over a wide current density range. Besides, a Zn-nitrate battery with the catalyst as the cathode is assembled, which achieves a power density of 5.24 mW cm-2 and a yield rate of 1.15 mgh-1 mgcat. -1. Theoretical simulations further demonstrate that the boron dopants can optimize the adsorption and activation of NO3RR intermediates, and reduce the potential-determining step barrier, thus leading to an enhanced NH3 selectivity.

20.
Biosens Bioelectron ; 263: 116582, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39038401

RESUMO

This study develops a series of NBI-based acidochromic AIEgens engineered for ultra-wide acidochromic scope in self-reporting soft actuators, establishing the relationship between the photophysical properties and structural configurations of the AIEgens, further investigating their acidochromic behavior and fabricating acidity monitoring chips. The acidochromic behaviors were thoroughly investigated, and high-precision acidity monitoring chips were fabricated. We confirmed the protonation order of nitrogen atoms within the molecules and elucidated the acidochromic mechanisms through DFT and 1H NMR analyses. Utilizing these findings, we designed acid-driven hydrogel-based biomimetic actuators that can self-report and control the release of heavy loads under acidic conditions. These actuators hold significant potential for applications in targeted drug delivery within acidic biological environments, controlled release systems, and specialized transportation of heavy loads under acidic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA