Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.457
Filtrar
1.
Chemosphere ; 239: 124747, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31514003

RESUMO

BACKGROUNDS: Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS: The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 µM PCB 156 treatment. RESULTS: Exposure to PCB 156 (3.4 µM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION: Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.

2.
J Biomed Mater Res A ; 108(1): 69-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31496042

RESUMO

Polylactic-co-glycolic acid (PLGA) is one of the most promising synthetic materials for tissue engineering due to its excellent biocompatibility, good mechanical properties, and tunable biodegradation time. However, the accumulation of PLGA degradative products could cause significant host inflammatory response, a microenvironment favoring tissue fibrosis that is mainly mediated by M1 subtype macrophage. Drug loading is an emerging technology to modify electrospun nanofibers, and asiaticoside (AS) was demonstrated as an anti-inflammatory drug. This study investigated the potential effect of AS incorporating into PLGA electrospun nanofibers on modulating host inflammatory response. The results showed that AS co-electrospun with PLGA nanofibers could significantly reduce the infiltration of inflammatory cells at the implantation site as opposed to the site of regular PLGA nanofibers. In particular, immunohistochemistry demonstrated decreased M1 macrophage infiltration whereas increased M2 macrophage infiltration in the implantation site of AS-PLGA nanofibers when compared to the PLGA implantation site. In vitro study also revealed that culture of human fibroblasts on PLGA nanofibers resulted in significantly enhanced gene expression of inflammatory cytokines when compared to non-seeded fibroblasts, but these genes were significantly downregulated when seeded on AS-PLGA. Furthermore, culture of macrophage on AS-PLGA led to upregulated M2 marker gene expression and downregulated M1 marker gene expression. Collectively, these results indicate that, AS might be an ideal drug for loading into electrospun polymer nanofibers and thus favoring for tissue regeneration via mediating macrophage polarization.

3.
IEEE Trans Image Process ; 29: 214-224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31331884

RESUMO

Compositing is one of the most important editing operations for images and videos. The process of improving the realism of composite results is often called harmonization. Previous approaches for harmonization mainly focus on images. In this paper, we take one step further to attack the problem of video harmonization. Specifically, we train a convolutional neural network in an adversarial way, exploiting a pixel-wise disharmony discriminator to achieve more realistic harmonized results and introducing a temporal loss to increase temporal consistency between consecutive harmonized frames. Thanks to the pixel-wise disharmony discriminator, we are also able to relieve the need of input foreground masks. Since existing video datasets which have ground-truth foreground masks and optical flows are not sufficiently large, we propose a simple yet efficient method to build up a synthetic dataset supporting supervised training of the proposed adversarial network. The experiments show that training on our synthetic dataset generalizes well to the real-world composite dataset. In addition, our method successfully incorporates temporal consistency during training and achieves more harmonious visual results than previous methods.

4.
Talanta ; 207: 120291, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594579

RESUMO

Herein, a simple and green "ON-OFF-ON" sensing system was developed using ultrasonic-exfoliated g-C3N4 nanosheets (CNNS) for the determination of a thiol-based ionic liquid (THIL), which was prominently different from common organic or biothiol molecules in terms of physico-chemical properties. After addition of THIL ([HSBMIM]Br used as an example), the Ag+-quenched CNNS fluorescence ("OFF" state) was recovered to the "ON" state due to reaction between THIL and Ag+ that led to functional group activation on CNNS surfaces. This phenomenon can be explained by competition of THIL with Ag+ because of the strong and specific affinity of -SH groups in THIL for Ag+ and by the reversibility of the Ag+-CNNS coordination reaction. Relevant factors influencing fluorescent recovery were rigorously optimized, including solution pH, incubation time as well as CNNS and THIL concentrations. THIL-recovered fluorescence intensities increased with increasing THIL concentrations providing a linear range of 15-360 nM and limit of detection (LOD) of 4.28 nM (1.07 µg L-1). Testing a series of conventional imidazole-based ionic liquids indicated high specificity for the target analyte and negligible interference effects for the determination of nM-level THIL. The proposed fluorescent sensing method demonstrated excellent feasibility for trace THIL determination in real-world fresh and marine water matrices with high extraction recovery (90.3-107.9%) and high inter- and intra-day precisions (2.3-5.6% relative standard deviations). As far as our information goes, it is the first report on the development of g-C3N4-based "ON-OFF-ON" sensing platform for fast, sensitive and cost-effective determination of nM-level ionic liquids in natural waters.

5.
Cytokine ; 125: 154854, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539844

RESUMO

BACKGROUND: Sepsis is a major cause of death for ICU patients. Sepsis development depends heavily on the presence of mature IL-1ß cytokine. This study evaluates the potential therapeutic properties of a bioactive compound known as 6-gingerol on sepsis. This compound has previously been demonstrated to possess anti-inflammatory properties both in vivo and in vitro. METHODS: C57BL/6 mice was used to establish models of sepsis by means of cecal ligation and puncture (CLP). Upon treatment with 6-gingerol, we assessed the survival rate of mice and measured the levels of key pro-inflammatory cytokines in serum and colon tissues. Sepsis pathogenesis was further explored using the RAW264.7 cell line and bone marrow-derived macrophages (BMDMs) treated with ATP and lipopolysaccharide (LPS). The impact of 6-gingerol on pyroptosis was also examined. In addition, we assessed the role of MAPK signaling in 6-gingerol-induced effects in BMDMs and RAW264.7 cells. RESULTS: In CLP mice, 6-gingerol significantly ameliorated sepsis development, which was associated with the reduction of serum IL-1ß. In BMDMs and RAW264.7 cells, 6-gingerol strongly attenuated pyroptosis as well as the release of caspase-1p20, HMGB1, mature IL-1ß, IL-18 in response to ATP and LPS treatment. 6-Gingerol conferred these effects by blocking MAPK activation. Exposure to an ERK agonist (EGF) reversed effects of 6-gingerol, causing pyroptosis, LDH and caspase-1p20 release. CONCLUSIONS: By targeting MAPK signaling, 6-gingerol significantly suppressed secretion of pro-inflammatory cytokines and inhibited macrophage cells pyroptosis resulting in overall inhibition of sepsis development.

6.
Bioresour Technol ; 295: 122244, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31627064

RESUMO

Under the situation of increasingly severe challenge of energy consumption, it is of great importance to make full use of bioresources such as forestry and agricultural residues. Herein, the corncob residues generated after processing corncob were enzymatically hydrolyzed to yield fermentable sugars. To overcome the recalcitrance of corncob residues, three kinds of pretreatment methods, i.e., sulfonation, PFI refining, and wet grinding, were applied; their effects on enzymatic hydrolysis and main characteristics of corncob residues substrate were investigated. The results showed that the enzymatic digestibility of the substrate was greatly enhanced by employing each method. The wet grinding exhibited obvious advantages, e.g., the conversion yield of cellulose to glucose and glucose concentration reached 96.7% and 32.2 g/L after 59 h of enzymatic hydrolysis, respectively. The improvement in enzymatic hydrolysis was mainly attributed to the altered characteristics of the substrate such as swelling ability, specific surface area, and particle size and distribution.


Assuntos
Celulose , Zea mays , Fermentação , Glucose , Hidrólise
7.
J Phys Condens Matter ; 32(1): 015401, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519010

RESUMO

Low plasticity has been a major issue for the application of Mg alloys. Here, based on the generalized stacking fault energy curves and Arrhenius equation, we systematically study alloying effects on the stacking fault energies and the activation probability of basal and non-basal 〈a〉, and pyramidal 〈c + a〉 slip systems in twenty-one Mg alloys. Our results reveal that activation of 〈c + a〉 slip systems on pyramidal II plane can significantly improve the plasticity. For example, Ca is found to promote the activation probability of this slip system by one order of magnitude and dramatically improve the plasticity of Mg.

8.
Cell Signal ; 65: 109460, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31678253

RESUMO

BACKGROUND: Although gankyrin has been identified as a vital regulator of tumorigenesis, its role and regulatory mechanism in osteosarcoma (OS) remain unclear. METHODS: QRT-PCR, western blot and IHC staining were conducted to detect the expression of gankyrin in OS. Pearson's χ² test was adopted to examine the associations between gankyrin expression and clinicopathologic characteristics. Kaplan-Meier method was used to investigate the relationship between gankyrin expression and overall survival of patients with OS. Next, a series of in vitro and in vivo assays were performed to determine the positive feedback loop between gankyrin and YAP in OS. RESULTS: We first reported that gankyrin is upregulated in human OS specimens and cell lines and predicts OS progression and poor prognosis. Furthermore, we demonstrated that gankyrin protects miR-200a-mediated yes-associated protein (YAP) downregulation through p53 and establishes a positive feedback loop to regulate YAP signaling in U2OS and MG63 cells. Intriguingly, gankyrin interacts with YAP to promote OS cell growth in vitro. In addition, our results showed that gankyrin promotes OS tumor growth and regulates YAP levels in vivo. Notably, we also observed a positive correlation between gankyrin and YAP expression in human OS tissues, and co-upregulation of gankyrin and YAP indicated a poor prognosis. CONCLUSIONS: Our results identify that gankyrin acts as an oncogene in OS by forming a positive feedback loop with YAP, and disrupting the gankyrin-YAP regulation may be beneficial for controlling OS tumorigenesis.

9.
Food Chem ; 303: 125401, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31466031

RESUMO

Salt addition and thermal pretreatment were used to improve the freeze-thaw stability of Pickering emulsion gels (PEGs) stabilized by compound proteins. Thermal pretreatment with the presence of salt could promote the formation of gel-like structure and alter the interactions between the emulsion droplets of PEGs, sequentially increase the resistance of the PEGs to water separation, creaming, and oiling-off during freeze-thaw cycles (freeze at -20 °C for 22 h and thawing at 37 °C for 2 h), especially at higher salt levels (200 and 500 mM). Microstructures indicated that the presence of high salt concentration and heat pretreatment could help to maintain the gel-like structures of PEGs during freeze-thaw cycles. Overall, our results showed that novel viscoelastic food materials with good freeze-thaw stability can be produced by controlling the electrostatic interactions between the emulsion droplets and the gelation of emulsion gels. These materials may be useful for application in frozen food products.


Assuntos
Fixadores/química , Géis/química , Emulsões/química , Congelamento , Temperatura Alta , Óleos/química , Concentração Osmolar , Cloreto de Sódio/análise , Água/química
10.
Mater Sci Eng C Mater Biol Appl ; 107: 110307, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761160

RESUMO

Biodegradable scaffolds play an important role in tissue engineering, and appropriate degradation and resorption rates of these scaffolds are necessary to accommodate tissue growth. Synthetic polymers are frequently used because of their ease of production, good biocompatibility and controllable degradation rates. However, monitoring the degradation of these polymers in vivo by a noninvasive approach remains limited. In this study, we designed a composite scaffold by labeling poly(lactic-co-glycolic acid) (PLGA) with gold nanoclusters (Au NCs), which were used for tracking in vivo degradation through dual-modal fluorescence/computed tomography (CT) imaging. The diameter of the Au NCs was approximately 2.5 nm, and the emission peak was at a wavelength of 700 nm. After labeling PLGA with the Au NCs, the fluorescence intensity of the Au NC/PLGA composite scaffold reached 9.0 × 109 (p/s/cm2/sr)/(µW/cm2), and the CT density of the scaffold increased to 200 HU. After the composite scaffold was implanted subcutaneously into nude mice, a continuous decrease in the fluorescence signal and CT value was observed. The mean fluorescence intensity was 8.3 × 109, 3.17 × 109, 2.26 × 109, 2.11 × 109, and 1.82 × 109 (p/s/cm2/sr)/(µW/cm2) from the first week to the fifth week, respectively. The mean CT value changed from 222.6 to 185.9, 149.1, 112.5, and 55.2 (Hounsfield unit, HU) at the different timepoints. Compared with the change in the fluorescence intensity, the change in the CT value was similar to the change in the weight, and the Pearson correlation coefficient between the change in the CT value and weight was 0.8626. Furthermore, the structure and morphology of the scaffolds at different timepoints were analyzed by three-dimensional (3-D) reconstruction. This novel method of noninvasive dynamic monitoring of biodegradable polymers in vivo provides insight into choosing suitable biomaterials for tissue engineering and regenerative medicine.

11.
Enzyme Microb Technol ; 132: 109409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731962

RESUMO

Zygosaccharomyces rouxii is a well-known salt-tolerant yeast. In our previous study, it was interesting that Z. rouxii could produce higher levels of 4-hydroxy-2, 5-dimethyl-3(2 H)-furanone in 120 g/L D-fructose and 180 g/L NaCl involved YPD medium at 5 d. In order to explore the resistance and furanone production mechanisms of Z. rouxii under D-fructose regulation, a comparative transcriptomics method in Z. rouxii was to set to find differentially expressed genes, the physiological and biochemical indexes (growth and cell morphology, lipid peroxidation and relative electrical conductivity, the antioxidant enzymes activity), and the expression of oxidoreductase activity genes. The results indicated that a larger number of different expressed genes at transcriptome analysis, such as the series antioxidant enzymes were related to the resistance characteristics. Research had confirmed that the living cell numbers and cell areas of D-fructose regulation group were significantly lower than the controls at the initial stage, while those higher than of the controls at the late stage. During the fermentation period, the lipid peroxidation and the relative electrical conductivity of the yeast cell membrane were increased. And also the D-fructose regulation group present lower inhibition superoxide anion ability. The activity of CAT in the D-fructose regulation group was always higher than that of the control group. Only the activity of GSH-Px was found to be significantly increased at 1 d except for other enzymes activities. Most of the oxidoreductase activity genes, such as especially the GSH-Px gene under D-fructose regulation conditions were expressed at higher levels than those of control groups. Combining the levels of transcription and enzymes activity data, those could understand that exogenous D-fructose had a stress effect on Z. rouxii at the early stage of culture. With the fermentation time progress, it was no longer a stressor substance for the Z. rouxii, and changed the nutrient to promote growth of Z. rouxii in the later stages. During the whole process, GSH-Px was the main defense enzyme and CAT was the sustained defense enzyme. Therefore, the experimental results might provide effective mechanisms in Z. rouxii for practical application of furanone production in the industry under exogenous D-fructose regulation.

12.
Waste Manag ; 101: 200-209, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622865

RESUMO

Present work was focused on recovering gold (Au) from the printed circuit boards (PCBs) of discarded cellphone by bioleaching assisted continuous foam fractionation. First, the cyanide-producing strains of Pseudomonas putida and Bacillus megaterium were co-cultured in order to supply a high cyanide concentration in the nutrient solution for mobilizing Au from waste PCBs (WPCBs). Bioleaching conditions were optimized by using response surface methodology. Under the suitable bioleaching conditions of pH of 10.0, pulp density of 5 g/L and leaching time of 34 h, the Au mobilization percentage was 83.59%. The leaching liquor with an Au concentration of 1.34 mg/L could be used as the feeding solution of continuous foam fractionation after removing solid particles and cell biomass. In order to strengthen foam drainage, a novel internal component of foam fractionation column was developed. Under the suitable operation conditions of CTAB concentration of 0.2 g/L, volumetric air flow rate of 100 mL/min and feed flow rate of 10 mL/min, the enrichment ratio and recovery percentage of Au were 43.62 and 87.46%, respectively. This study is expected to provide an effective strategy to recover Au from WPCBs, and to supplement the depleting natural resources.


Assuntos
Telefone Celular , Resíduo Eletrônico , Cobre , Ouro , Reciclagem
13.
Eur J Pharm Sci ; 141: 105093, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648049

RESUMO

Reaction phenotyping is a method commonly used for characterizing drug metabolism. It determines the drug metabolic pathways and ratios by measuring the metabolized fractions of individual enzymes. However, currently published results have focused on cytochrome P450s (CYPs), while not considering phase II metabolism. Therefore, the morphinan analgesic, nalbuphine, primarily metabolized in the liver via CYPs and UDP-glucuronosyltransferases (UGTs), was selected as a model drug to establish a dual-phase platform to elucidate its comprehensive metabolic pathway. Enzyme kinetics was studied using 8 common recombinant (r)CYPs, 10 rUGTs, and pooled human liver microsomes. The overall fraction of nalbuphine metabolized by each isozyme was evaluated by determining parent drug depletion. Finally, in vitro-in vivo correlation was validated in animal studies. Fluconazole, a specific UGT2B7 inhibitor, was administered orally to rats to determine the pharmacokinetic effects on nalbuphine and nalbuphine metabolites. Seventy-five percent and 25% of nalbuphine was metabolized by UGTs and CYPs, respectively. UGT2B7, UGT1A3, and UGT1A9 were primarily responsible for nalbuphine glucuronidation; only UGT2B7 produced nalbuphine-6-glucuronide. CYP2C9 and CYP2C19 were the two CYP isozymes that produced 3'-hydroxylnalbuphine and 4'-hydroxylnalbuphine. In vivo, the maximum serum concentration (Cmax) and area under the curve (AUC) of nalbuphine increased 12.4-fold and 13.2-fold, respectively, with fluconazole co-administration. A dual system platform for drug metabolism was successfully established in this study and was used to generate a complete metabolic scheme for nalbuphine. This platform has been verified by in vivo evaluations and can be utilized to study drugs that undergo multisystem metabolism.

14.
Opt Express ; 27(20): 28457-28465, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684597

RESUMO

Ghost imaging is developed to obtain images of the objects based on intensity correlation of illumination patterns. However, it can be hard to distinguish between objects if the difference between their reflectivities is small. Considering the difference between degrees of polarization in the reflected light from different points, we put forward a method to retrieve distribution of the degree of linear polarization, and obtain high quality image of the objects. With the illumination source being linearly polarized, two orthogonal polarization components of the reflected intensities are measured, from which we can get the distribution of the degree of linear polarization. Furthermore, for the case that the degree of linear polarization can be approximately described with two different values within the field of view, we demonstrate retrieving of the image with high contrast. Our method can be widely applied in different situations, such as extracting the image of target hidden behind disguise or getting higher contrast in bio-imaging.

15.
Opt Express ; 27(20): 29124-29132, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684651

RESUMO

We studied temperature-dependent amplified spontaneous emission (ASE) in CsPbBr3 perovskite thin films. For temperatures 180-360 K, a narrow-band lasing is observed. However, a new accompanying ASE band appears below 180 K, indicating a more complicated behavior. The two ASE bands are strongly correlated and in competition; they are assigned as exciton and bi-exciton recombination. We estimated the exciton binding energy (EB = 27.3 meV) and that of the bi-exciton, which is lower than the EB. The reduced effective mass of the exciton is estimated as µ = 0.11 me. This discovery identifies more details of the ASE phenomenon.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31717430

RESUMO

Short chain fatty acids (SCFAs) are produced by the colonic microbiota through fermentation. Influences of maternal PM2.5 exposure on SCFAs of the offspring have not been well understood. Additionally, studies of dietary intervention have not been carried out yet. Here we performed a study that dams were received PM2.5 and quercetin intervention during gestation and lactation. SCFAs in colon of dams and their offspring (on postnatal day 21 and 35) were analyzed using gas chromatography. For male offspring, when compared with the control group levels of acetic acid, butyric acid, and valeric acid were lower in the PM2.5 group (p < 0.05), however, levels of isobutyric acid and isovaleric acid were higher in the PM2.5 group (p < 0.05). For female offspring, as compared with the control group, propanoic acid was lower in the PM2.5 group, however isovaleric acid was higher in the PM2.5 group (p < 0.05). 100 mg/kg and 200 mg/kg quercetin intervention could inhibit SCFAs production of male offspring, especially in isobutyric acid and isovaleric acid (p < 0.05). 100 mg/kg quercetin intervention could upgrade the level of propanoic acid of female offspring (p < 0.05). Taken together, these results suggest that PM2.5 tracheal exposure during gestation and lactation could influence SCFAs of offspring. Quercetin administration might have the potential to offset the effects of mater PM2.5 exposure on SCFAs in the offspring to some extent. The above effects were showed in a sex-dependent manner.

17.
Sensors (Basel) ; 19(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717949

RESUMO

Considering the inertial measurement unit (IMU) faults risk of an unmanned aerial vehicle (UAV), this paper studies the error overboundings of the state estimation of the extended Kalman filter (EKF) in a tightly coupled IMU/global navigation satellite system (GNSS) integrated architecture under the IMU fault condition, which can be used to assure the integrity of the UAV navigation system. The error overboundings of the error-state inertial navigation equations based EKF (error-state EKF) are obtained according to the IMU faults propagation derivation, which can be expressed as a sum of the terms related to the EKF innovation, the estimated bias, and the remaining position error. It presents the same expression with the error overbounding of the full-state inertial navigation equations based EKF (full-state EKF). Simulation results show that both the error overboundings of the error-state and full-state EKFs can fit the state error against the IMU faults, but the error-state EKF is more suitable for UAV navigation system integrity assurance due to its higher calculation efficiency. This study will be extended to the integrity monitoring of multisensor systems.

18.
Ecotoxicol Environ Saf ; : 109898, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31711775

RESUMO

Gamma-aminobutyric acid (GABA) plays a critical role in regulation of gonadotropin-releasing hormone (GnRH) through GABAA receptor (GABAAR). Nitric oxide (NO) production has correlation with GABA and regulates GnRH secretion. This study was performed to examine the mechanisms by which manganese (Mn) accelerate puberty onset involves GABAAR/NO pathway in the preoptic area-anterior hypothalamus (POA-AH) in immature female rats. First, female rats received daily dose of MnCl2 0 (saline), 2.5, 5 and 10 mg/kg b.w by oral gavage during postnatal day (PND) 21-32. Animals administered with 10 mg/kg MnCl2 exhibited earlier puberty onset age and advanced ovary and uterus development than these in saline-treatment group. Furthermore, we found that decrease of GABAAR result in elevated production of nitric oxide synthase1 (NOS1), NO and GnRH in the POA-AH. Second, we recorded the neuronal spikes alternation after perfusion with GABAAR inhibitor bicuculline (BIC), GABAAR agonist isoguvacine (isog), and MnCl2 from the POA-AH in acute brain slices of PND21 rats. Spontaneous firing revealed a powerful GABAAR-mediated action on immature POA-AH and confirm that MnCl2 has a significant effect on GABAAR. Third, we revealed that decrease in NOS1 and NO production by treatment with isog-alone or isog+MnCl2 contribute to the decrease of GnRH in the POA-AH and a delayed puberty onset age compared to treatment with MnCl2-alone. Together, these results suggested that excessive exposure to MnCl2 stimulates NO production through decreased GABAAR in the POA-AH to advance puberty onset in immature female rats.

19.
Cell Tissue Res ; 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713726

RESUMO

The human endolymphatic sac (ES) is believed to regulate inner ear fluid homeostasis and to be associated with Meniere's disease (MD). We analyzed the ion transport protein sodium/potassium-ATPase (Na/K-ATPase) and its isoforms in the human ES using super-resolution structured illumination microscopy (SR-SIM). Human vestibular aqueducts were collected during trans-labyrinthine vestibular schwannoma surgery after obtaining ethical permission. Antibodies against various isoforms of Na/K-ATPase and additional solute-transporting proteins, believed to be essential for ion and fluid transport, were used for immunohistochemistry. A population of epithelial cells of the human ES strongly expressed Na/K-ATPase α1, ß1, and ß3 subunit isoforms in either the lateral/basolateral or apical plasma membrane domains. The ß1 isoform was expressed in the lateral/basolateral plasma membranes in mostly large cylindrical cells, while ß3 and α1 both were expressed with "reversed polarity" in the apical cell membrane in lower epithelial cells. The heterogeneous expression of Na/K-ATPase subunits substantiates earlier notions that the ES is a dynamic structure where epithelial cells show inverted epithelial transport. Dual absorption and secretion processes may regulate and maintain inner ear fluid homeostasis. These findings may shed new light on the etiology of endolymphatic hydrops and MD.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31669773

RESUMO

The pond wolf spider, Pardosa pseudoannulata, is one of the dominant natural enemies in farmlands and plays important roles in controlling a range of insect pests. The spider is less sensitive to many insecticides than the target pests such as the brown planthopper, Nilaparvata lugens. The different sensitivity to a certain insecticide between species is mostly attributed to the differences in both molecular targets and detoxification enzymes. As one of the most important detoxification enzymes, glutathione transferases (GSTs) play a key role as phase II enzyme in the enzymic detoxification in organisms. Until now, there are few studies on spiders' GSTs, limiting the understanding of insecticide selectivity between insect pests and natural enemy spiders. In this study, based on the transcriptome and genome sequencing of P. pseudoannulata, thirteen full-length transcripts encoding GSTs were identified and analyzed. Interestingly, Delta family, which is thought to be specific to the Insecta, was identified in P. pseudoannulata. Further, vertebrate/mammalian-specific Mu family was also identified in P. pseudoannulata. The mRNA expression levels of cytosolic GSTs in different tissues were determined, and most GST genes were abundant in the gut and the fat body. To investigate GST candidates involving in insecticide detoxification, the mRNA levels of cytosolic GSTs were tested after spiders' exposure to either imidacloprid or deltamethrin. The results showed that PpGSTD3 and PpGSTT1 responded to at least one of these two insecticides. The present study helped understand the function of GSTs in P. pseudoannulata and enriched the genetic information of natural enemy spiders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA