Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.597
Filtrar
1.
Sci Rep ; 14(1): 15152, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956404

RESUMO

Removing texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details, adopting a multi-directional difference constrained global gradient sparsity decomposition method, which provides a guidance image with weaker texture detail gradients. Meanwhile, using the luminance channel as a reference, edge-aware operator is constructed based on local gradient constraints. This operator weakens the gradients of repetitive and similar texture details, enabling it to obtain more accurate structural information for guiding global optimization of the image. By projecting multi-directional differences onto the horizontal and vertical directions, a mapping from multi-directional differences to bi-directional gradients is achieved. Additionally, to ensure the consistency of measurement results, a multi-directional gradient normalization method is designed. Through experiments, we demonstrate that our method exhibits significant advantages in preserving image edges compared to current advanced smoothing methods.

2.
World J Clin Oncol ; 15(6): 667-673, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946830

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.

3.
NPJ Breast Cancer ; 10(1): 54, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951507

RESUMO

Intrinsic breast cancer molecular subtyping (IBCMS) provides significant prognostic information for patients with breast cancer and helps determine treatment. This study compared IBCMS methods on various gene-expression platforms in PALOMA-2 and PALLET trials. PALOMA-2 tumor samples were profiled using EdgeSeq and nanostring and subtyped with AIMS, PAM50, and research-use-only (ruo)Prosigna. PALLET tumor biopsies were profiled using mRNA sequencing and subtyped with AIMS and PAM50. In PALOMA-2 (n = 222), a 54% agreement was observed between results from AIMS and gold-standard ruoProsigna, with AIMS assigning 67% basal-like to HER2-enriched. In PALLET (n = 224), a 69% agreement was observed between results from PAM50 and AIMS. Different IBCMS methods may lead to different results and could misguide treatment selection; hence, a standardized clinical PAM50 assay and computational approach should be used.Trial number: NCT01740427.

4.
Cell Rep ; 43(7): 114424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959111

RESUMO

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.

5.
Sci Rep ; 14(1): 15137, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956226

RESUMO

In this study, a shaking table test was conducted on long-short composite anti-slide piles, the development process and dynamic response of cracks in a pile-supported slope were observed, and the failure mechanism of the slope was explored. The experiment showed that the failure of the pile-supported slope under an earthquake was a gradual process; cracks first occur at the top of the slope, where the support action of the piles was weak. As the input seismic action increased, cracks developed downwards along the slope. Owing to the support effect of the long-short anti-slide composite piles, the transmission path of the cracks changed, and the cracks developed along the top of the composite piles, ultimately leading to overtop failure. When cracks appeared on the slope or near final failure, the acceleration response law of the supported slope undergone a sudden change, which was an important indicator of slope instability. The distribution of dynamic soil stress on the pile body was greatly affected by the input peak ground acceleration, and the maximum bending moment of the long-short composite anti-slide piles was located near the weak interlayer.

6.
Sci Rep ; 14(1): 15368, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965410

RESUMO

To detect and analyze the changes of microorganisms in expressed prostatic secretion (EPS) of patients with IIIB prostatitis before and after low-intensity pulsed ultrasound (LIPUS) treatment, and to explore the mechanism of LIPUS in the treatment of chronic prostatitis (CP). 25 patients (study power was estimated using a Dirichlet-multinomial approach and reached 96.5% at α = 0.05 using a sample size of 25) with IIIB prostatitis who were effective in LIPUS treatment were divided into two groups before and after LIPUS treatment. High throughput second-generation sequencing technique was used to detect and analyze the relative abundance of bacterial 16 s ribosomal variable regions in EPS before and after treatment. The data were analyzed by bioinformatics software and database, and differences with P < 0.05 were considered statistically significant. Beta diversity analysis showed that there was a significant difference between groups (P = 0.046). LEfSe detected four kinds of characteristic microorganisms in the EPS of patients with IIIB prostatitis before and after LIPUS treatment. After multiple comparisons among groups by DESeq2 method, six different microorganisms were found. LIPUS may improve patients' clinical symptoms by changing the flora structure of EPS, stabilizing and affecting resident bacteria or opportunistic pathogens.


Assuntos
Próstata , Prostatite , Ondas Ultrassônicas , Humanos , Masculino , Prostatite/terapia , Prostatite/microbiologia , Prostatite/metabolismo , Próstata/microbiologia , Próstata/metabolismo , Próstata/patologia , Adulto , Bactérias/metabolismo , Bactérias/genética , Pessoa de Meia-Idade , Terapia por Ultrassom/métodos , Microbiota , RNA Ribossômico 16S/genética
7.
J Colloid Interface Sci ; 675: 451-460, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981254

RESUMO

HYPOTHESIS: Ice friction plays a crucial role in both basic study and practical use. Various strategies for controlling ice friction have been developed. However, one unsolved puzzle regarding ice friction is the effect of ion-ice interplay on its tribological properties. EXPERIMENTS AND SIMULATIONS: Here, we conducted ice friction experiments and summarized the specific effects of hydrated ions on ice friction. By selecting cations and anions, the coefficient of ice friction can be reduced by more than 70 percent. Experimental spectra, low-field nuclear magnetic resonance (LF-NMR), density functional theory (DFT) calculations, and Molecular dynamics (MD) simulations demonstrated that the addition of ions could break the H-bonds in water. FINDINGS: The link between the charge density of ions and the coefficients of ice friction was revealed. A part of the ice structure was changed from an ice-like to a liquid-like interfacial water structure with the addition of ions. Lower charge density ions led to weaker ionic forces with the water molecules in the immobilized water layer, resulting in free water molecules increasing in the lubricating layer. This study provides guidance for preparing ice-making solutions with low friction coefficients and a fuller understanding of the interfacial water structure at low temperatures.

8.
Sci Total Environ ; 947: 174637, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986692

RESUMO

Microplastics are widespread in freshwaters, yet their interaction with navigational structures remains unclear. This study compared the distribution and characteristics of microplastics before and after navigation in Wabu Lake. Microplastic concentrations decreased significantly in both surface water and sediment due to navigation opened, from 13.7 ± 6.56 to 3.12 ± 1.8 p L-1 (p < 0.001) and from 568 ± 286 to 174 ± 60.2 p kg-1 (p < 0.001), respectively. Acrylates copolymer was frequently detected in surface water and sediment before navigation, whereas the dominant polymer after navigation was chlorinated polyisoprene in surface water and chlorinated polyethylene in sediment. The results showed that three-years dredging induced relatively severe microplastic pollution before navigation, however, these microplastics were apparently eliminated after navigation, as the distribution and characteristics of microplastics thoroughly varied. This study provides a valuable finding that microplastic transport process can be facilitated by water transfer project, which should be considered for preventing microplastic pollution.

9.
Front Pharmacol ; 15: 1407200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989151

RESUMO

Introduction: Panax ginseng C. A. Mey. (Araliaceae; Ginseng Radix et Rhizoma), a traditional plant commonly utilized in Eastern Asia, has demonstrated efficacy in treating neuro-damaging diseases and diabetes mellitus. However, its precise roles and mechanism in alleviating type 2 diabetes mellitus (T2DM) need further study. The objective of this study is to explore the pharmacological effects of ginseng extract and elucidate its potential mechanisms in protecting islets and promoting ß-cell regeneration. Methods: The T2DM mouse model was induced through streptozotocin combined with a high-fat diet. Two batches of mice were sacrificed on the 7th and 28th days following ginseng extract administration. Body weight, fasting blood glucose levels, and glucose tolerance were detected. Morphological changes in the pancreatic islets were examined via H & E staining. Levels of serum insulin, glucagon, GLP-1, and inflammatory factors were measured using ELISA. The ability of ginseng extract to promote pancreatic islet ß-cell regeneration was evaluated through insulin & PCNA double immunofluorescence staining. Furthermore, the mechanism behind ß-cells regeneration was explored through insulin & glucagon double immunofluorescence staining, accompanied by immunohistochemical staining and western blot analyses. Results and Discussion: The present research revealed that ginseng extract alleviates symptoms of T2DM in mice, including decreased blood glucose levels and improved glucose tolerance. Serum levels of insulin, GLP-1, and IL-10 increased following the administration of ginseng extract, while levels of glucagon, TNF-α, and IL-1ß decreased. Ginseng extract preserved normal islet morphology, increased nascent ß-cell population, and inhibited inflammatory infiltration within the islets, moreover, it decreased α-cell proportion while increasing ß-cell proportion. Mechanistically, ginseng extract might inhibit ARX and MAFB expressions, increase MAFA level to aid in α-cell to ß-cell transformation, and activate AKT-FOXM1/cyclin D2 to enhance ß-cell proliferation. Our study suggests that ginseng extract may be a promising therapy in treating T2DM, especially in those with islet injury.

10.
Nature ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977018

RESUMO

Two-dimensional (2D)/three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells (PSCs)1,2. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks that leads to degradation in performance over time3,4. We hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration. We explored a set of perovskitoids of varying dimensionality, and found that cation migration within perovskitoid/perovskite heterostructures was suppressed compared to the 2D/3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces - this the result of enhanced octahedral connectivity and out-of-plane orientation. The 2D perovskitoid (A6BfP)8Pb7I22 (A6BfP: N-aminohexyl-benz[f]-phthalimide) provides efficient passivation of perovskite surfaces and enables uniform large-area perovskite films. Devices based on perovskitoid/perovskite heterostructures achieve a certified quasi-steady-state power conversion efficiency of 24.6% for centimeter-area PSCs. We removed the fragile hole transport layers and showed stable operation of the underlying perovskitoid/perovskite heterostructure at 85°C for 1,250 hours for encapsulated large-area devices in an air ambient.

11.
Int J Clin Oncol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977538

RESUMO

PURPOSE: To measure the micro-foci distance away from gross tumor and to provide reference to create the clinical target volume (CTV) margin for boost radiotherapy in rectal adenocarcinoma. METHODS: Twenty-eight rectal cancer surgical specimens of only total mesorectal excision were collected. The pathological specimens were retrospectively measured, and the nearest distance between the tumor micro-foci and gross tumor was microscopically measured. The "in vivo-in vitro" retraction factor was calculated as the ratio of the deepest thickness laterally and the vertical height superior/inferiorly of the rectal tumor measured in MRI and those measured in immediate pathological specimens. The retraction factor during pathological specimen processing was calculated as the distance ratio before and after dehydration in the lateral, superior, and inferior sides by the "knot marking method." The distances of tumor micro-foci were individually corrected with these two retraction factors. RESULTS: The mean "in vivo-in vitro" tumor retraction factors were 0.913 peripherally and 0.920 superior/inferiorly. The mean tumor specimen processing retraction factors were 0.804 peripherally, 0.815 inferiorly, and 0.789 superiorly. Of 28 patients, 14 cases (50.0%) had 24 lateral micro-foci, 8 cases (28.6%) had 13 inferior micro-foci, and 7 cases (25.0%) had 19 superior micro-foci. The 95th percentiles of the micro-foci distance for 28 patients were 6.44 mm (peripheral), 5.54 mm (inferior), and 5.42 mm (superior) after retraction correction. CONCLUSION: The micro-foci distances of 95% of rectal adenocarcinoma patients examined were within 6.44 mm peripherally, 5.54 mm inferiorly, and 5.42 mm superiorly. These findings provide reference to set the boost radiotherapy CTV margin for rectal cancer.

12.
Transl Stroke Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977638

RESUMO

Chronic cerebral ischemia (CCI) results in a prolonged insufficient blood supply to the brain tissue, leading to impaired neuronal function and subsequent impairment of cognitive and motor abilities. Our previous research showed that in mice with bilateral carotid artery stenosis, the collateral neovascularization post Encephalo-myo-synangiosis (EMS) treatment could be facilitated by bone marrow mesenchymal stem cells (MSCs) transplantation. Considering the advantages of biomaterials, we synthesized and modified a gelatin hydrogel for MSCs encapsulation. We then applied this hydrogel on the brain surface during EMS operation in rats with CCI, and evaluated its impact on cognitive performance and collateral circulation. Consequently, MSCs encapsulated in hydrogel significantly augment the therapeutic effects of EMS, potentially by promoting neovascularization, facilitating neuronal differentiation, and suppressing neuroinflammation. Furthermore, taking advantage of multi-RNA-sequencing and in silico analysis, we revealed that MSCs loaded in hydrogel regulate PDCD4 and CASP2 through the overexpression of miR-183-5p and miR-96-5p, thereby downregulating the expression of apoptosis-related proteins and inhibiting early apoptosis. In conclusion, a gelatin hydrogel to enhance the functionality of MSCs has been developed, and its combination with EMS treatment can improve the therapeutic effect in rats with CCI, suggesting its potential clinical benefit.

13.
J Pineal Res ; 76(5): e12989, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38978438

RESUMO

Colistin is renowned as a last-resort antibiotic due to the emergence of multidrug-resistant pathogens. However, its potential toxicity significantly hampers its clinical utilization. Melatonin, chemically known as N-acetyl-5-hydroxytryptamine, is an endogenous hormone produced by the pineal gland and possesses diverse biological functions. However, the protective role of melatonin in alleviating antibiotic-induced intestinal inflammation remains unknown. Herein, we reveal that colistin stimulation markedly elevates intestinal inflammatory levels and compromises the gut barrier. In contrast, pretreatment with melatonin safeguards mice against intestinal inflammation and mucosal damage. Microbial diversity analysis indicates that melatonin supplementation prevents a reduction in the abundance of Erysipelotrichales and Bifidobacteriales, as well as an increase in Desulfovibrionales abundance, following colistin exposure. Remarkably, short-chain fatty acids (SCFAs) analysis shows that propanoic acid contributes to the protective effect of melatonin on colistin-induced intestinal inflammation. Furthermore, the protection effects of melatonin and propanoic acid on LPS-induced cellular inflammation in RAW 264.7 cells are confirmed. Mechanistic investigations suggest that intervention with melatonin and propanoic acid can repress the activation of the TLR4 signal and its downstream NF-κB and MAPK signaling pathways, thereby mitigating the toxic effects of colistin. Our work highlights the unappreciated role of melatonin in preventing the potential detrimental effects of colistin on intestinal health and suggests a combined therapeutic strategy to effectively manage intestinal infectious diseases.


Assuntos
Colistina , Disbiose , Microbioma Gastrointestinal , Melatonina , Melatonina/farmacologia , Animais , Camundongos , Colistina/efeitos adversos , Disbiose/induzido quimicamente , Disbiose/metabolismo , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Células RAW 264.7 , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Masculino , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL
14.
Theranostics ; 14(10): 4161-4183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994022

RESUMO

Extracellular vesicles (EVs) are enclosed by a nanoscale phospholipid bilayer membrane and typically range in size from 30 to 200 nm. They contain a high concentration of specific proteins, nucleic acids, and lipids, reflecting but not identical to the composition of the parent cell. The inherent characteristics and variety of EVs give them extensive and unique advantages in the field of cancer identification and treatment. Recently, EVs have been recognized as potential tumor markers for the detection of cancer. Aptamers, which are molecules of single-stranded DNA or RNA, demonstrate remarkable specificity and affinity for their targets by adopting distinct tertiary structures. Aptamers offer various advantages over their protein counterparts, such as reduced immunogenicity, the ability for convenient large-scale synthesis, and straightforward chemical modification. In this review, we summarized EVs biogenesis, sample collection, isolation, storage and characterization, and finally provided a comprehensive survey of analysis techniques for EVs detection that are based on aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Vesículas Extracelulares , Neoplasias , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais/metabolismo , Animais
15.
Front Pharmacol ; 15: 1415445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994205

RESUMO

Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1ß, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1ß. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.

16.
Int Immunopharmacol ; 139: 112666, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002521

RESUMO

Immunotherapy has limited response rates in colorectal cancer (CRC) due to an immunosuppressive tumor microenvironment (TME). Combining transcriptome sequencing, clinical specimens, and functional experiments, we identified a unique group of CAF subpopulations (COX4I2 + ) with inhibited mitochondrial respiration and enhanced glycolysis. Through bioinformatics predictions and luciferase reporter assays, we determined that EBF1 can upstreamly regulate COX4I2 transcription. COX4I2 + CAFs functionally and phenotypically resemble myofibroblasts, are important for the formation of the fibrotic TME, and are capable of activating the M2 phenotype of macrophages. In vitro experiments demonstrated that COX4I2 + CAFs promote immunosuppressive TME by blocking CD8 + T cell infiltration and inducing CD8 + T cell dysfunction. Using multiple independent cohorts, we also found a strong correlation between the immunotherapy response rate of CRC patients and COX4I2 expression in their tumors. Our results identify a CAF subpopulation characterized by activation of the EBF1-COX4I2 axis, and this group of CAFs can be targeted to improve cancer immunotherapy outcomes.

17.
Cell Death Differ ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987382

RESUMO

Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/ß-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/ß-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/ß-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the ß-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/ß-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/ß-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.

18.
Eur Radiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987399

RESUMO

OBJECTIVE: To investigate the value of radiomics analysis of dual-layer spectral-detector computed tomography (DLSCT)-derived iodine maps for predicting tumor deposits (TDs) preoperatively in patients with colorectal cancer (CRC). MATERIALS AND METHODS: A total of 264 pathologically confirmed CRC patients (TDs + (n = 80); TDs - (n = 184)) who underwent preoperative DLSCT from two hospitals were retrospectively enrolled, and divided into training (n = 124), testing (n = 54), and external validation cohort (n = 86). Conventional CT features and iodine concentration (IC) were analyzed and measured. Radiomics features were derived from venous phase iodine maps from DLSCT. The least absolute shrinkage and selection operator (LASSO) was performed for feature selection. Finally, a support vector machine (SVM) algorithm was employed to develop clinical, radiomics, and combined models based on the most valuable clinical parameters and radiomics features. Area under receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis were used to evaluate the model's efficacy. RESULTS: The combined model incorporating the valuable clinical parameters and radiomics features demonstrated excellent performance in predicting TDs in CRC (AUCs of 0.926, 0.881, and 0.887 in the training, testing, and external validation cohorts, respectively), which outperformed the clinical model in the training cohort and external validation cohorts (AUC: 0.839 and 0.695; p: 0.003 and 0.014) and the radiomics model in two cohorts (AUC: 0.922 and 0.792; p: 0.014 and 0.035). CONCLUSION: Radiomics analysis of DLSCT-derived iodine maps showed excellent predictive efficiency for preoperatively diagnosing TDs in CRC, and could guide clinicians in making individualized treatment strategies. CLINICAL RELEVANCE STATEMENT: The radiomics model based on DLSCT iodine maps has the potential to aid in the accurate preoperative prediction of TDs in CRC patients, offering valuable guidance for clinical decision-making. KEY POINTS: Accurately predicting TDs in CRC patients preoperatively based on conventional CT features poses a challenge. The Radiomics model based on DLSCT iodine maps outperformed conventional CT in predicting TDs. The model combing DLSCT iodine maps radiomics features and conventional CT features performed excellently in predicting TDs.

19.
J Obstet Gynaecol Can ; : 102613, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004404
20.
Artigo em Inglês | MEDLINE | ID: mdl-39007413

RESUMO

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA