Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.470
Filtrar
1.
Food Chem ; 368: 130736, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34399179

RESUMO

To systematically identify and quantify the γ- and δ-lactones in Cheddar cheeses, 20 samples from three sources (Ireland, the UK and the USA) were analysed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), aroma extract dilution analysis, aroma recombination analysis, and aroma addition/omission analysis. Nine lactones were detected in these samples, and one of these lactones, γ-undecalactone, was identified in Cheddar cheese for the first time. The quantitative results showed that the concentration of lactones in these cheeses usually increased as the length of their maturity period increased. γ-Octalactone, γ-undecalactone, γ-dodecalactone, δ-octalactone, δ-decalactone and δ-dodecalactone were identified as aroma-active substances based on their odour activity values and aroma extract dilution analysis, with flavour dilution factors ranging from 2 to 128. Aroma recombination and omission experiments based on a newly developed deodorised Cheddar matrix further validated the important contributions of these lactones to the overall aroma of Cheddar cheeses. The addition of each lactone to aroma recombination models reduced the aroma intensity of sour and rancid properties to various extents and improved the acceptability of the overall flavour.


Assuntos
Queijo , Compostos Orgânicos Voláteis , Queijo/análise , Cromatografia Gasosa-Espectrometria de Massas , Lactonas , Odorantes/análise , Olfatometria , Extratos Vegetais , Compostos Orgânicos Voláteis/análise
2.
Environ Pollut ; 292(Pt A): 118326, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653591

RESUMO

Bauxite residue, an industrial alkaline solid waste, has a low organic carbon content which hinders plant growth. Dissolved organic matter (DOM) drives many biogeochemical processes including carbon storage and soil formation in soils. Input of exogenous organic materials may provide organic carbon and accelerate soil formation processes in bauxite residue. However, the potential effects of ameliorants on the quantity and quality of DOM in bauxite residue are still poorly understood. Here, the integration of ultraviolet-visible (UV-Vis) spectra, fluorescence spectra, and parallel factor (PARAFAC) analysis were used to investigate the vertical characteristics of DOM in bauxite residue treated by PV (the combined addition of 2% phosphogypsum and 4% vermicompost, w/w) and BS (6% w/w including 4% bagasse and 2% bran) with 2-year column experiments. The content of DOM in untreated residues ranged from 0.064 to 0.096 g/kg, whilst higher contents of DOM were observed in PV (0.13 g/kg) and BS (0.26 g/kg) treatment. Meanwhile, with the increase of residue depth, the aromaticity and hydrophobic components of DOM in residue decreased, which indicated that the degree of humification of the treated residues in the upper layer was higher than that in the lower layer. Compared with BR, BS and PV treatment accumulated the related content of fulvic acid-like substance from 36.14% to 71.33% and 74.86%, respectively. The incorporation of vermicompost and biosolids increased the content of humic-like substances, whilst decreasing the content of protein-like substances in the surface layer, which may be due to the enrichment of the microbial community. During soil formation processes, the application of organic amendments reduced both salinity and alkalinity, enhanced microbial community diversity, and changed the quantity and quality of DOM in bauxite residue. These findings improve our understanding of the dynamics of DOM and response of DOM to soil formation processes in bauxite residue.


Assuntos
Substâncias Húmicas , Solo , Óxido de Alumínio , Carbono , Análise Fatorial , Substâncias Húmicas/análise , Espectrometria de Fluorescência
3.
J Colloid Interface Sci ; 606(Pt 1): 567-576, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411829

RESUMO

Iron corrosion is a subject of great technological importance and extensive public concern. However, the highly efficient detection of iron corrosion at early stage is still a challenging task. Herein, bright fluorescent carbon dots (CDs) with superior response to Fe3+ were prepared by simple solvothermal process based on citric acid and ammonia. The obtained CDs are able to rapidly, sensitively and selectively respond to Fe3+. The quantitative analysis showed that the CDs exhibited a linear response to Fe3+ in the range of 10 to 300 µM, with a detection limit of 0.9 µM. And the fluorescence quenching of CDs was obvious enough to be detected by the naked eyes. Such promising responsiveness of CDs offers a great opportunity for real-time and visual detection of Fe3+ during electrochemical corrosion process. In addition, due to the excellent stability and solubility of CDs, patterned papers and hydrogels have been fabricated utilizing cellulose and PVA as matrices. The as-prepared biocompatible, environmental-friendly and disposable CDs based fluorescent materials were successfully used for detecting the degree of iron corrosion. This could provide a simple and visual strategy for monitoring the safety of structural metal materials.


Assuntos
Carbono , Pontos Quânticos , Corrosão , Corantes Fluorescentes , Nitrogênio
4.
Front Oncol ; 11: 768222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746009

RESUMO

The CD71+ erythroid progenitor cells (CECs) exhibit distinctive immunosuppressive properties and regulate antitumor immunity to enable tumor growth. We presented a novel and non-invasive approach to improving immunity by targeting the splenic CECs via sonoporation generated by ultrasound-targeted microbubble destruction (UTMD). The systematic immunity enhanced by the reduction of PDL-1-expressing CECs also benefits the PDL-1 blockade therapy. In the Lewis lung cancer (LLC) model, the study group was treated by UTMD for 10 min at the splenic area with or without anti-mouse PDL-1 intraperitoneal injection. The frequency of splenic CEC, lymphocyte, and cytokine production was analyzed by flow cytometry. Serum interleukin-2 (IL-2) was tested by ELISA. Tumor volume was evaluated by two-dimensional ultrasound. The UTMD treatment consisted of ultrasound sonication and Sonazoid™ microbubble injection through the caudal vein. The mechanic index (MI) of ultrasound was set between 0.98 and 1.03. The results showed a significant reduction of splenic CECs and increased frequency of CD8+ T cells treated by UTMD treatment in the late-stage tumor. Tumor growth could be inhibited by UTMD combined with PDL-1 blockade therapy. The frequencies of interferon-γ (IFN-γ) producing CD8+ and CD4+ T cells were significantly increased after being treated by the combination of UTMD and PDL-1 blockade, while the reactive oxygen species (ROS) production and the fraction of the TGF-ß-producing CD11b+ cells were significantly decreased. These preliminary findings suggest that UTMD enhances immune response and facilitates PDL-1 blockade therapy by targeting immunosuppressive CECs in the spleen. Our study provides new aspects and possibilities for treating cancer-related infection and tumor control in oncology.

5.
Asian J Androl ; 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34755700

RESUMO

Individualized treatment of prostate cancer depends on an accurate stratification of patients who are sensitive to various treatments. Interleukin-23 (IL-23) was reported to play a significant role in prostate cancer. Here, we aimed to explore the clinical value of IL-23-secreting (IL-23+) cells in prostate cancer patients. We evaluated interleukin-23A (IL-23A) expression in The Cancer Genome Atlas database and retrospectively enrolled 179 treatment-naïve metastatic prostate cancer patients diagnosed in our institute between June 2012 and December 2014. IL-23+ cells were stained and evaluated via immunohistochemistry. Further, survival and multivariate Cox regression analyses were conducted to explore the prognostic value of IL-23+ cells. We found that IL-23A expression correlated with disease progression, while IL-23+ cells were clearly stained within prostate cancer tissue. Patients with higher Gleason scores and multiple metastatic lesions tended to have more IL-23+ cell infiltration. Further analyses showed that patients with higher levels of IL-23+ cells had significantly worse overall survival (hazard ratio [HR] = 2.996, 95% confidence interval [95% CI]: 1.812-4.955; P = 0.001) and a higher risk of developing castration resistance (HR = 2.725, 95% CI: 1.865-3.981; P = 0.001). Moreover, subgroup analyses showed that when patients progressed to a castration-resistant status, the prognostic value of IL-23+ cells was observed only in patients treated with abiraterone instead of docetaxel. Therefore, we showed that high IL-23+ cell infiltration is an independent prognosticator in patients with metastatic prostate cancer. IL-23+ cell infiltration may correlate with abiraterone effectiveness in castration-resistant prostate cancer patients.

6.
Adv Sci (Weinh) ; : e2100808, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34719888

RESUMO

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.

7.
Adv Sci (Weinh) ; : e2103250, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723437

RESUMO

The unique electronic structure and crystal structure driven by external pressure in transition metal tellurides (TMTs) can host unconventional quantum states. Here, the discovery of pressure-induced phase transition at ≈2 GPa, and dome-shaped superconducting phase emerged in van der Waals layered NbIrTe4 is reported. The highest critical temperature (Tc ) is ≈5.8 K at pressure of ≈16 GPa, where the interlayered Te-Te covalent bonds form simultaneously derived from the synchrotron diffraction data, indicating the hosting structure of superconducting evolved from low-pressure two-dimensional (2D) phase to three-dimensional (3D) structure with pressure higher than 30 GPa. Strikingly, the authors have found an anisotropic transport in the vicinity of the superconducting state, suggesting the emergence of a "stripe"-like phase. The dome-shaped superconducting phase and anisotropic transport are possibly due to the spatial modulation of interlayer Josephson coupling .

8.
J Transl Med ; 19(1): 463, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772407

RESUMO

BACKGROUND: Intestinal ischemia/reperfusion (I/R) injury commonly occurs during perioperative periods, resulting in high morbidity and mortality on a global scale. Dexmedetomidine (Dex) is a selective α2-agonist that is frequently applied during perioperative periods for its analgesia effect; however, its ability to provide protection against intestinal I/R injury and underlying molecular mechanisms remain unclear. METHODS: To fill this gap, the protection of Dex against I/R injury was examined in a rat model of intestinal I/R injury and in an inflammation cell model, which was induced by tumor necrosis factor-alpha (TNF-α) plus interferon-gamma (IFN-γ) stimulation. RESULTS: Our data demonstrated that Dex had protective effects against intestinal I/R injury in rats. Dex was also found to promote mitophagy and inhibit apoptosis of enteric glial cells (EGCs) in the inflammation cell model. PINK1 downregulated p53 expression by promoting the phosphorylation of HDAC3. Further studies revealed that Dex provided protection against experimentally induced intestinal I/R injury in rats, while enhancing mitophagy, and suppressing apoptosis of EGCs through SIRT3-mediated PINK1/HDAC3/p53 pathway in the inflammation cell model. CONCLUSION: Hence, these findings provide evidence supporting the protective effect of Dex against intestinal I/R injury and its underlying mechanism involving the SIRT3/PINK1/HDAC3/p53 axis.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34789677

RESUMO

PURPOSE OF REVIEW: Chronic rhinosinusitis (CRS) is a heterogeneous disorder with diverse responses to conventional anti-inflammatory medical and surgical treatments. Even for the newly developed mAbs targeting type 2 (T2) reaction, a considerable number of patients with CRS with nasal polyps (CRSwNP) exhibited unsatisfying response. Identifying patients with a tendency to poor prognosis is critical for selecting targeted therapies to improve the treatment outcome. This review focuses on clinical and biological markers associated with prognosis of CRS patients under conventional medical and surgical treatments and provides an update summary of potential markers for T2 biologics. RECENT FINDINGS: Allergic rhinitis, asthma, prior sinus surgery, nasal polyps, tissue eosinophilia and neutrophilia, blood eosinophilia and high levels of Charcot-Leyden crystal, cystatin SN, chemokine (C-C motif) ligand 17, macrophage inflammatory protein-1ß and interleukin (IL)-5 in nasal secretions have been associated with poor prognosis in CRS patients under conventional medical and surgical treatments. Blood eosinophil level might be a biomarker for anti-IL-5 (mepolizumab) and anti-IL-5R (benralizumab) biologic in patients with refractory CRSwNP. SUMMARY: Several clinical and biological markers have been associated with poor response to conventional treatments in CRS patients; however, majority of them should be verified by large-scale multicentre studies. More efforts are needed to identify biomarkers for biologics.

10.
Front Pharmacol ; 12: 761883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803705

RESUMO

Qinbaiqingfei concentrated pills (QB) are a commonly used medicine for the treatment of mycoplasma pneumonia in China, and the mechanism of action of QB needs to be studied further. Therefore, we use a combination of metabolomics and network pharmacology to clarify the mechanism of QB. Nontarget metabolomics studies were performed on rat serum, urine, and lung tissues, and 56 therapeutic biomarkers were found. Subsequently, the components of QB absorbed into the blood and lung tissues were clarified, and based on this finding, the core target of network pharmacology was predicted. The enrichment analysis of biomarkers-genes finally confirmed their close relationship with the NF-κB signaling pathway. By western blotting expression of the proteins in the lung tissue-related signaling pathways, it is finally confirmed that QB inhibits the NF-κB signaling pathway through SIRT1, IL-10 and MMP9, CTNNB1, EGFR, and other targets. It plays a role in regulating immunity, regulating metabolism, and treating diseases.

11.
Nat Commun ; 12(1): 6279, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725338

RESUMO

Van der Waals magnets have emerged as a fertile ground for the exploration of highly tunable spin physics and spin-related technology. Two-dimensional (2D) magnons in van der Waals magnets are collective excitation of spins under strong confinement. Although considerable progress has been made in understanding 2D magnons, a crucial magnon device called the van der Waals magnon valve, in which the magnon signal can be completely and repeatedly turned on and off electrically, has yet to be realized. Here we demonstrate such magnon valves based on van der Waals antiferromagnetic insulator MnPS3. By applying DC electric current through the gate electrode, we show that the second harmonic thermal magnon (SHM) signal can be tuned from positive to negative. The guaranteed zero crossing during this tuning demonstrates a complete blocking of SHM transmission, arising from the nonlinear gate dependence of the non-equilibrium magnon density in the 2D spin channel. Using the switchable magnon valves we demonstrate a magnon-based inverter. These results illustrate the potential of van der Waals anti-ferromagnets for studying highly tunable spin-wave physics and for application in magnon-base circuitry in future information technology.

12.
Nanoscale ; 13(45): 18961-18966, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34783820

RESUMO

Ruddlesden-Popper perovskites possess a rich variety of multiple phases due to their mixed organic cations and variable layer numbers. However, the direct observation of these phases and their optical performance in ultrathin nanosheets, have rarely been reported. Here we demonstrate, through a one-pot CVD synthesis method to incorporate MA+ and NMA+ cations into PbI2 simultaneously, that the stackings of Ruddlesden-Popper phases with a distribution of a number of layers 〈n〉 can be produced within a single perovskite nanosheet. As featured by the micro-, time-resolved and temperature-dependent photoluminescence measurements, the optical properties are highly dependent on the nanosheet thickness.

13.
Front Surg ; 8: 759487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820417

RESUMO

Background: Thulium laser resection of bladder tumors (TmLRBT) is recently considered as a common treatment option for non-muscle-invasive bladder cancers (NMIBC), but whether it is superior to Transurethral resection of bladder tumors (TURBT) are still undetermined. Materials and Methods: We retrospectively screened our institution database to identify patients who were treated by conventional TURBT or TmLRBT for NMIBC and followed by intravesical bacillus Calmette-Guérin (BCG) immunotherapy. The preoperative characteristics, perioperative outcomes, and recurrence-free survival were compared to assess the safety and efficacy of the two procedures. Results: Eventually, 90 patients who underwent TmLRBT (n = 37) or TURBT (n = 53) followed by intravesical BCG immunotherapy were included. Two groups were similar in baseline characteristics except for the smaller tumor size of the TmLRBT group(1.7 cm vs. 2.2 cm; P = 0.036). Obturator nerve reflex occurred in eight patients in the TURBT group and 3 of them suffered from bladder perforation while none happened in the TmLRBT group. The TmLRBT also had a shorter irrigation duration. In the multivariate Cox regression, the TmLRBT was related to less recurrence risk (HR: 0.268; 95% CI, 0.095-0.759; P = 0.013). Conclusion: Our results suggested that TmLRBT is safer than conventional TURBT with fewer perioperative complications, and it offers better cancer control, therefore might be a superior option for NMIBC patients with intermediate and high recurrence risk.

14.
Inorg Chem ; 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34822248

RESUMO

The template-assisted route is an effective avenue for the preparation of core-shell and hollow micromaterials. However, the conversion process is usually characterized by ex situ transmission electron microscopy, limiting the comprehensive understanding of the structure evolution. Here, we use dark-field microscopy (DFM) to visually image the chemical conversion process of Cu2O concave microcubes into metal hydroxide (MHs, M = Co, Ni, and Mn) microstructures at the single-particle level. The details of the conversion process such as early steps in the conversion reaction, intermediate states, and final states are successfully tracked in real time. The in situ DFM experiments clarify that the etching of Cu2O predates the generation of MHs, and the conversion reaction shows significant particle-to-particle variation. Meanwhile, the results also show that experimental parameters dominate the conversion of Cu2O concave microcubes, allowing for the precise manipulation of the reaction degree to obtain Cu2O@Co(OH)2 core-shell microstructures with different shell thicknesses and hollow Co(OH)2 microstructures. The present work offers a direct observation and manipulation of the conversion process of Cu2O microparticles, paving the way for rational design and preparation of various core-shell and hollow micromaterials.

15.
Small ; : e2103734, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34825473

RESUMO

Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.

16.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768749

RESUMO

Understanding miRNAs regulatory roles in epithelial-mesenchymal transition (EMT) would help establish new avenues for further uncovering the mechanisms underlying radiation-induced pulmonary fibrosis (RIPF) and identifying preventative and therapeutic targets. Here, we demonstrated that miR-541-5p repression by Myeloid Zinc Finger 1 (MZF1) promotes radiation-induced EMT and RIPF. Irradiation could decrease miR-541-5p expression in vitro and in vivo and inversely correlated to RIPF development. Ectopic miR-541-5p expression suppressed radiation-induced-EMT in vitro and in vivo. Knockdown of Slug, the functional target of miR-541-5p, inhibited EMT induction by irradiation. The upregulation of transcription factor MZF1 upon irradiation inhibited the expression of endogenous miR-541-5p and its primary precursor (pri-miR-541-5p), which regulated the effect of the Slug on the EMT process. Our finding showed that ectopic miR-541-5p expression mitigated RIPF in mice by targeting Slug. Thus, irradiation activates MZF1 to downregulate miR-541-5p in alveolar epithelial cells, promoting EMT and contributing to RIPF by targeting Slug. Our observation provides further understanding of the development of RIPF and determines potential preventative and therapeutic targets.

18.
J Biomed Mater Res A ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34816584

RESUMO

Following recent advances in osteoimmunology, there is growing recognition of the vital role of immune cells in the osteogenesis process. The 3D-printed scaffold, as a substitute for injured and/or diseased bone tissues, has demonstrated satisfactory pro-osteogenetic performance. However, whether immune cells prompt the above pro-osteogenetic performance has not been elucidated in detail. In the present study, highly controllable Ti-6Al-4V scaffolds with different pore geometries were fabricated using a selective laser-melting technique, to reveal their osteoimmunological functions with macrophages. The results showed that macrophages displayed characteristics of M2 phenotype in response to scaffolds. As a result, an anti-inflammatory microenvironment was generated. When the pore geometry was considered, such observations were more apparent with the hexagonal pore scaffold than with the triangular one. In addition, inhibition of the toll-like receptor signaling pathway in macrophages has been proposed to cause the above phenomenon. Upon applying conditioned media derived from macrophages on pre-osteoblasts, the hexagonal pore scaffold group was found to significantly enhance osteoblastic differentiation, via macrophage-to-implant interactions. However, the effect of triangular pore scaffold was not statistically significant compared to that of hexagonal pore scaffolds or nonporous samples. In an attempt to quantify scaffold pore geometries, it was suggested that pores with higher circularity values tended to induce M2 polarization of macrophages, promote an anti-inflammatory milieu, and therefore, achieve better osteogenetic performance via immunomodulation.

19.
Mater Horiz ; 8(2): 612-618, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821278

RESUMO

Cocatalyst design is a key approach to acquire high solar-energy conversion efficiency for photocatalytic hydrogen evolution. Here a new in situ vapor-phase (ISVP) growth method is developed to construct the cocatalyst of 2D PtS nanorectangles (a length of ∼7 nm, a width of ∼5 nm) on the surface of g-C3N4 nanosheets. The 2D PtS nanorectangles/g-C3N4 nanosheets (PtS/CN) show an unusual metal sulfide-support interaction (MSSI), which is evidenced by atomic resolution HAADF-STEM, synchrotron-based GIXRD, XPS and DFT calculations. The effect of MSSI contributes to the optimization of geometrical structure and energy-band structure, acceleration of charge transfer, and reduction of hydrogen adsorption free energy of PtS/CN, thus yielding excellent stability and an ultrahigh photocatalytic H2 evolution rate of 1072.6 µmol h-1 (an apparent quantum efficiency of 45.7% at 420 nm), up to 13.3 and 1532.3 times by contrast with that of Pt nanoparticles/g-C3N4 nanosheets and g-C3N4 nanosheets, respectively. This work will provide a new platform for designing high-efficiency photocatalysts for sunlight-driven hydrogen generation.

20.
J Appl Clin Med Phys ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842335

RESUMO

PURPOSE: Medical linear accelerators (linacs) can fail in a multitude of different manners due to complex structures. An unclear identification of failure modes occurring constantly is a major obstacle to maintenance arrangements, thereby may increasing downtime. This study aims to use natural language processing techniques to deal with the unformatted maintenance logs to identify the linac failure modes and trends over time. MATERIALS AND METHODS: The data used in our study are unformatted narrative maintenance logs recording linac conditions and repair actions. The latent Dirichlet allocation-based topic modeling method was used to identify topics and keywords regarding the failure modes. The temporal analysis method was applied to examine the variation of failure modes over 20 years. RESULTS: Based on the output of the topic modeling, 28 topics and keywords with frequency ranking were generated automatically. The latent failure modes in topics were identified and classified into six main subsystems of linacs. Furthermore, by using the temporal analysis method, the trends of all failure modes over 20 years were illustrated. Half of the topics demonstrated variations with three different patterns, namely periodic, increasing, and decreasing. CONCLUSIONS: The results of our study validated the effectiveness of using the topic modeling method to automatically analyze narrative maintenance logs. With domain knowledge, failure modes of linacs can be identified and categorized quantitatively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...