Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
1.
Front Pediatr ; 10: 920741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147799

RESUMO

Schinzel-Giedion syndrome (SGS) is a multiple malformation syndrome characterized by typical facial features, severe neurodevelopmental delay, and multiple congenital abnormalities. SGS is associated with de novo pathogenic variants in the SETBP1 gene. In specific, SETBP1 variants in over 50 patients with classical or non-classical SGS were clustered within exon 4. A male Chinese neonate with dysmorphic facial features, nervous system disorders, and organ malformations at birth was examined in this study and long-term followed-up. Whole-exome sequencing was performed to identify any underlying pathogenic variants in the proband. Additionally, we reviewed the literature that documents the main clinical features and underlying variants of all patients genetically diagnosed with SGS. The neonate had a characteristic midface retraction, abnormal electroencephalogram waveforms, and genital abnormalities. The patient did not initially develop hydronephrosis or undergo a comprehensive skeletal assessment. Six months after birth, the patient had an epileptic seizure and experienced persistent neurodevelopmental delay with auditory and visual abnormalities. Color Doppler ultrasonography at 18 months revealed hydronephrosis and bilateral widening of the lateral ventricles. The patient died suddenly 20.5 months after birth. Whole-exome sequencing revealed a heterozygous de novo variant (c.2605A > G:p.S869G) in exon 4 degradation sequence in SETBP1. The reported de novo heterozygous variant in SETBP1 (c.2605A > G:p.S869G) broadens the knowledge of the scientific community's on the possible SGS genetic alterations. To the best of our knowledge, this is the first report of SETBP1 variant (c.2605A > G:p.S869G) in SGS. The clinical manifestations of neonatal SGS are atypical, and genetic testing is crucial for diagnosis. Long-term follow-up should be conducted after diagnosis to optimize the therapeutic interventions.

2.
Genes (Basel) ; 13(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140698

RESUMO

Body fluids/tissue identification (BFID) is an essential procedure in forensic practice, and RNA profiling has become one of the most important methods. Small non-coding RNAs, being expressed in high copy numbers and resistant to degradation, have great potential in BFID but have not been comprehensively characterized in common forensic stains. In this study, the miRNA, piRNA, snoRNA, and snRNA were sequenced in 30 forensic relevant samples (menstrual blood, saliva, semen, skin, venous blood, and vaginal secretion) using the BGI platform. Based on small RNA profiles, relative specific markers (RSM) and absolute specific markers (ASM) were defined, which can be used to identify a specific body fluid/tissue out of two or six, respectively. A total of 5204 small RNAs were discovered including 1394 miRNAs (including 236 novel miRNA), 3157 piRNAs, 636 snoRNAs, and 17 snRNAs. RSMs for 15 pairwise body fluid/tissue groups were discovered by differential RNA analysis. In addition, 90 ASMs that were specifically expressed in a certain type of body fluid/tissue were screened, among them, snoRNAs were reported first in forensic genetics. In brief, our study deepened the understanding of small RNA profiles in forensic stains and offered potential BFID markers that can be applied in different forensic scenarios.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144982

RESUMO

Hepatocellular carcinoma (HCC) accounts for the predominant form of liver malignancy and presents a leading cause of cancer-related death globally. Sorafenib (SOR), a first-line targeted drug for advanced HCC treatment, has a battery of untoward side effects. Photothermal therapy (PTT) has been utilized as an effective adjuvant in synergy with other approaches. However, little is known about the tumoricidal efficacy of combining SOR with PTT for HCC. Herein, a novel versatile nanoparticle, Cu2-xSe@SOR@PEG (CSP), that is based on a photothermal Cu2-xSe core and SOR for simultaneously reinforcing PTT and reducing the adverse effects of SOR was constructed. The synthesized CSP exhibited a remarkably enhanced therapeutic effect upon 808 nm laser irradiation via dampening HCC cell propagation and metastasis and propelling cell apoptosis. The intravenous administration of CSP substantially suppressed tumor growth in a xenograft tumor mouse model. It was noted that the CSP manifested low toxicity and excellent biocompatibility. Together, this work indicates a promising and versatile tool that is based on synergistic PTT and molecular-targeted therapy for HCC management.

4.
J Environ Public Health ; 2022: 9201892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089950

RESUMO

Arts and crafts, with their very different styles due to many factors such as times, regions, technologies, and cultures and nationalities, have undergone an extremely long process, and it is only through continuous superimposition, development, and innovation that they have gradually formed the posture of today's arts and crafts. Public mental health education is the main way to promote the psychological health development of the public in colleges and universities at present. And among them, sound personality and good self-awareness is one of the important standards of psychological health of the large public and one of the important tasks of mental health education. As an effective psychological test and treatment method, arts and crafts analysis are an important part of mental health education. It has a certain role in improving the level of self-awareness and promoting the integration of personality. Art and craft analysis has advantages in mental health and educational group counseling that cannot be replaced by other words and activities, so it can be used in mental health education courses. It can be used in teaching self-awareness. In order to combine the development of arts and crafts with the development concept and promotion ideas of public mental health education, this article proposes an analysis of the role of arts and crafts in public mental health education based on artificial intelligence computing to enhance the development of arts and crafts from a new perspective and seek the inheritance and innovation of arts and crafts and public mental health education in the new historical period, and proves the proposed method in the relevant dataset. The validity of the proposed method is demonstrated in the relevant dataset.


Assuntos
Inteligência Artificial , Tecnologia , Educação em Saúde , Saúde Mental , Universidades
5.
Front Pharmacol ; 13: 952482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071851

RESUMO

Sorafenib resistance is often developed and impedes the benefits of clinical therapy in hepatocellular carcinoma (HCC) patients. However, the relationship between sorafenib resistance and tumor immune environment and adjuvant drugs for sorafenib-resistant HCC are not systemically identified. This study first analyzed the expression profiles of sorafenib-resistant HCC cells to explore immune cell infiltration levels and differentially expressed immune-related genes (DEIRGs). The prognostic value of DEIRGs was analyzed using Cox regression and Kaplan-Meier analysis based on The Cancer Genome Atlas. The primary immune cells infiltrated in sorafenib-resistant HCC mice were explored using flow cytometry (FCM). Finally, small-molecule drugs for sorafenib-resistant HCC treatment were screened and validated by experiments. The CIBERSORT algorithm and mice model showed that macrophages and neutrophils are highly infiltrated, while CD8+ T cells are downregulated in sorafenib-resistant HCC. Totally, 34 DEIRGs were obtained from sorafenib-resistant and control groups, which were highly enriched in immune-associated biological processes and pathways. NR6A1, CXCL5, C3, and TGFB1 were further identified as prognostic markers for HCC patients. Finally, nalidixic acid was identified as a promising antagonist for sorafenib-resistant HCC treatment. Collectively, our study reveals the tumor immune microenvironment changes and explores a promising adjuvant drug to overcome sorafenib resistance in HCC.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36065269

RESUMO

Background: The effect of GuizhiFuling Wan (GFW) on adenomyosis (AM) is definite. This study aimed to explore the mechanism and key therapeutic targets of GFW in treating AM through network pharmacology combined with molecular docking and experimental verification. Materials and Methods: In network pharmacology, firstly, the active components of GFW, its drug, and disease targets were screened through several related public databases, and GFW-AM common targets were obtained after the intersection. Then, the biological function (Gene Ontology, GO) and pathway (Kyoto Encyclopedia of Genes and Genomes, KEGG) of GFW in treating AM were enriched and analyzed. Finally, the interaction and binding force between key components and key targets of GFW were verified by molecular docking. In the animal part, the effect of GFW on the expression of matrix metallopeptidase 2 (MMP-2), matrix metallopeptidase 9 (MMP-9), and vascular endothelial growth factor (VEGF) in mice with AM was observed by HE staining, ELISA, and immunohistochemistry. Results: In this study, 89 active components of GFW, 102 related targets, and 291 targets of AM were collected. After the intersection, 26 common targets were finally obtained. The key active compounds were baicalein, sitosterol, and ß-sitosterol, and the key targets were MMP-2, MMP-9, and VEGF. GO and KEGG enrichment analyses showed that biological processes such as the positive regulation of vascular endothelial migration and signaling pathways such as TNF and HIF-1 were involved in regulating angiogenesis, invasion, and metastasis in AM. The molecular docking results showed that baicalein, ß-sitosterol, and stigmasterol had better binding potential with MMP-2, MMP-9, and VEGF. The results of in vivo analysis showed that GFW could decrease the serum content and protein expression of MMP-2, MMP-9, and VEGF in mice with AM. Conclusions: GFW could reduce the expression of MMP-2, MMP-9, and VEGF, which might be an essential mechanism for GFW to inhibit the invasion and metastasis of ectopic tissues of AM.

7.
J Colloid Interface Sci ; 629(Pt A): 11-21, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36049325

RESUMO

Piezoelectricity as a physical property has received great attention due to its excellently functional applications, especially in piezoelectric catalysis and mechanical energy harvesting. To take full advantage of the functions of piezoelectric materials, (K0.5Na0.5)0.94Li0.06NbO3 (KNN6L) piezoelectric powders were compounded with polydimethylsiloxane (PDMS) in this work. The developed KNN6L-PDMS porous piezoelectric composites with flexible and recyclable characteristics could achieve âˆ¼ 91% degradation rate of Rhodamine B (RhB) dye wastewater under mechanical vibration, and the outstanding piezocatalytic activity was still maintained after repeated decomposition multiple times. Besides, the relationship between piezoelectric potential and piezocatalysis was validated by COMSOL simulations. The content of piezoelectric powders played a positive effect on the magnitude of piezoelectric potential generated by the KNN6L-PDMS porous composites. Moreover, the catalytic mechanism was found to be originated by generation of various reactive oxygen species (mainly •O2- and •OH) in water environment as a result of strong piezoelectric effect by the porous composites. The porous piezoelectric composites with flexible and recyclable characteristics exhibited excellent performance in piezoelectric catalysis which has promising applications in the field of environmental remediation.

8.
New Phytol ; 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059081

RESUMO

Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.

9.
Adv Mater ; : e2206654, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36122571

RESUMO

Above 50% of deaths can be attributed to chronic inflammatory diseases, thus the construction of drug delivery system based on effective interaction of inflammatory factors with chemotactic nanoparticles is meaningful. Herein, we propose a zwitterion-based artificial chemotactic nanomotor for universal precise targeting strategy in vivo, where the high level of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in inflammatory sites are used as chemoattractants. And the multi-dimensional static models, dynamic models and in vivo models are established to evaluate chemotactic performance. Results show that the up-regulated ROS and iNOS can induce the chemotaxis of nanomotors to diseased tissues in inflammation-related disease models. Further, the mesoscale hydrodynamics simulations are performed to explain the chemotactic behavior of nanomotors. Such chemotactic delivery strategy is expected to improve the delivery efficiency and may be applicable to a variety of inflammatory diseases. This article is protected by copyright. All rights reserved.

10.
Protoplasma ; 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35941329

RESUMO

Microspore embryogenesis is an effective method of obtaining double haploid (DH) lines in only 1 year. However, the microspore embryogenesis protocol was not efficient in pakchoi. This study aimed to establish an effective microspore culture protocol in pakchoi for hybrid breeding. The embryos were obtained from three genotypes (18SY01, 18SY02, 18SY03), but the frequency of microspore embryogenesis was significantly different. Globular embryos from three genotypes were placed into a rotary shaker (50 r/min, 25 ℃) for further culture to improve microspore embryogenesis and plantlet regeneration without callus development. Shake culture not only increased the frequency of cotyledonary embryos but also accelerated microspore embryogenesis in the NLN-13 liquid medium. Moreover, the doubled haploid rates of regenerated plants for the three genotypes were above 50%. The morphological characters and plot yield of DH lines were identified, and there were significant differences between them. According to the measurement of the self-compatibility index, all the DH lines were self-incompatible. Furthermore, the hybrid combination was prepared with the selected DH lines and the pakchoi genic male sterile line GMS010 to develop excellent hybrids. This work contributes to accelerating the application of microspore embryogenesis and supplying the DH lines in pakchoi hybrid breeding.

11.
Proc Natl Acad Sci U S A ; 119(32): e2119850119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925886

RESUMO

Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Orelha Interna , Elementos Facilitadores Genéticos , Células Ciliadas Auditivas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular , Cóclea/citologia , Orelha Interna/citologia , Células Ciliadas Auditivas/fisiologia
12.
J Pediatr Surg ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961818

RESUMO

BACKGROUND: Cervical neuroblastic tumors (NTs) are rare but less aggressive cancer with an above-average survival rate. Little has been published regarding the management and surgical outcomes of patients with cervical NTs based on pathology category. This study compared and identified the preoperative characteristics of cervical NTs in different pathology categories and evaluated the outcomes of patients undergoing surgical resection. MATERIALS AND METHODS: Upon the institutional review board's approval, a retrospective chart review was performed at Beijing Children's Hospital from April 2013 to August 2020. Demographics of patients, imaging data, lab test results, operation details and outcomes were recorded and analyzed. RESULTS: Of 32 cervical NTs, 24(80%) were classified as neuroblastoma (NB) /ganglioneuroblastoma-nodular (GNBn) and 8(20%) as ganglioneuroblastoma-intermixed (GNBi)/ ganglioneuroma (GN). Patients with GNBi/GN were older than those with NB/GNBn (44.5 months (IQR 16-81) vs 9 months (IQR 1-47); P = 0.001). GNBi/GN patients presented more frequently with stage 1 disease compared with NB/GNBn patients (100% vs. 29.2%, P = 0.001), less frequently with tumor-related symptoms (0% vs. 70.8%, P = 0.001), artery encased tumor (0% vs. 41.7%, P = 0.035), and surgical complications (25% vs. 70.8%, P = 0.038). GNBi/GN patients were also less likely to show elevated neuron specific enolase (NSE) (12.5% vs. 79.2%, P = 0.002). CONCLUSIONS: Cervical NB/GNBn and GNBi/GN patients had distinct characteristic clinical presentations and surgical outcomes. For children with features suggestive of benign disease (older age, asymptomatic, normal serum tumor markers) and no artery image-defined risk factors (IDRFs), upfront resection can be considered.

13.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015405

RESUMO

Postharvest yellowing of leafy plant is a manifestation of senescence, and melatonin (MT) is known to delay leaf senescence in some higher plants. Herein, we investigated the effect of exogenous MT treatment on postharvest pakchoi by monitoring the ethylene biosynthesis and respiratory metabolism. Results showed that exogenous MT effectively extended the shelf life, delayed leaf yellowing, minimized the alteration in Fv/Fm ratio and maintained higher integrity of chloroplast in pakchoi. There was a significant correlation between yellowing index, respiration rate and ethylene production. MT treatments greatly delayed the yellowing process of pakchoi that was associated with the reduced activity of glycolysis pathway and tricarboxylic acid cycle (TCA), increased proportion of pentose phosphate pathway (PPP) in respiratory metabolism, as manifested by the lower activity of phosphohexose isomerase (PHI), succinate dehydrogenase (SDH) and cytochrome C oxidase (COX), downregulated the expression of their corresponding genes, but enhanced the activity and expression level of 6 phosphogluconate dehydrogenase (6PGDH). MT also markedly maintain chlorophyll content by inhibiting ethylene production and action during shelf life, likely a consequence of reduced activities of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO), as well as the expression levels of their related genes. These results collectively indicate that melatonin alleviated leaf yellowing of postharvest pakchoi might be attributed to the suppression of the ethylene biosynthesis and respiratory metabolism, and our findings contribute to provide a good candidate measure for extending shelf life and reducing postharvest loss of pakchoi.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36016675

RESUMO

Objective: To explore the molecular mechanism of the Cinnamomi ramulus and Paris polyphylla Sm. (C-P) drug pair in the treatment of adenomyosis (AM) based on network pharmacology and animal experiments. Methods: Via a network pharmacology strategy, a drug-component-target-disease network (D-C-T-D) and protein-protein interaction (PPI) network were constructed to explore the core components and key targets of C-P drug pair therapy for AM, and the core components and key targets were verified by molecular docking. Based on the results of network pharmacology, animal experiments were performed for further verification. The therapeutic effect of the C-P drug pair on uterine ectopic lesions was evaluated in a constructed AM rat model. Results: A total of 30 components and 45 corresponding targets of C-P in the treatment of AM were obtained through network pharmacology. In the D-C-T-D network and PPI network, 5 core components and 10 key targets were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K signaling pathway was the most significantly enriched nontumor pathway. Molecular docking showed that most of the core components and key targets docked completely. Animal experiments showed that the C-P drug pair significantly ameliorated the pathological changes of endometriotic lesions in AM model rats and inhibited PI3K and Akt gene expression, and PI3K and Akt protein phosphorylation. In addition, treatment with the C-P drug pair promoted AM cell apoptosis; upregulated the protein expression of Bax, Caspase-3, and cleaved Caspase-9; and restrained Bcl-2 expression. Conclusions: We propose that the pharmacological mechanism of the C-P drug pair in the treatment of AM is related to inhibition of the PI3K/Akt pathway and promotion of apoptosis in AM ectopic lesions.

15.
Sci Total Environ ; 849: 157871, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35952880

RESUMO

Magnesium oxychloride cement (MOC) has received extensive attention as an eco-friendly cement, but its poor water resistance limits its engineering applications. In this study, MOC mixture (MOCM) was modified with 10-50 % rice husk ash (RHA) (wt% of MgO), and the development of their fresh properties, mechanical strength and microstructure was investigated. The results show that the incorporation of RHA to MOCM increases the setting time of the mixture and reduces its flowability. Due to the fine particle size and high reactivity of RHA, the incorporation of an appropriate amount of RHA to MOCM improves the matrix compactness, thereby enhancing the compressive strength of the samples. Although the microstructure of MOCM deteriorates and the strength decreases after immersion in water, the strength retention coefficient of MOCM with 50 % RHA increases by 24.57 % compared with that of plain MOCM. The incorporation of RHA not only reduces the relative content of magnesium oxide in MOCM, but also generates Mg-Cl-Si-H gel, which is beneficial to improve the water resistance of MOCM. Meanwhile, with the increase of RHA content, the carbon emission of MOCM also decreases. Compared with other modification methods, RHA-modified MOCM performs better in terms of water resistance, environmental benefits and strength enhancement.

16.
ACS Appl Mater Interfaces ; 14(33): 37356-37368, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35951459

RESUMO

Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanocompostos , Fotoquimioterapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Irídio/farmacologia , Neoplasias Hepáticas/patologia , Nanocompostos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Sorafenibe/uso terapêutico
17.
Nat Commun ; 13(1): 4891, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986009

RESUMO

Understanding the function of moisture on perovskite is challenging since the random environmental moisture strongly disturbs the perovskite structure. Here, we develop various N2-protected characterization techniques to comprehensively study the effect of moisture on the efficient cesium, methylammonium, and formamidinium triple-cation perovskite (Cs0.05FA0.75MA0.20)Pb(I0.96Br0.04)3. In contrast to the secondary measurements, the established air-exposure-free techniques allow us directly monitor the influence of moisture during perovskite crystallization. We find a controllable moisture treatment for the intermediate perovskite can promote the mass transportation of organic salts, and help them enter the buried bottom of the films. This process accelerates the quasi-solid-solid reaction between organic salts and PbI2, enables a spatially homogeneous intermediate phase, and translates to high-quality perovskites with much-suppressed defects. Consequently, we obtain a champion device efficiency of approaching 24% with negligible hysteresis. The devices exhibit an average T80-lifetime of 852 h (maximum 1210 h) working at the maximum power point.

18.
Sci China Life Sci ; 65(9): 1718-1775, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36018491

RESUMO

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.


Assuntos
Melhoramento Vegetal , Triticum , Genoma de Planta/genética , Genômica , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
19.
J Transl Med ; 20(1): 379, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038907

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant tumors to threaten human life, and the survival rate remains low due to delayed diagnosis. Meanwhile, lncRNAs have great potential for application in tumor prognosis, therefore relevant research in hepatocellular carcinoma is indispensable. METHODS: Based on the EZH2 expression, the differentially expressed lncRNAs DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified in hepatocellular carcinoma by using the TCGA database. Bioinformatics technology was utilized to determine the effect of key genes in HCC progression. The methylation and immune infiltration analyses were performed to explore the underlying function of hub genes. Finally, cellular function experiments were performed to investigate the association between identified genes and biological phenotypes in HCC. RESULTS: lncRNA-AC079061.1, hsa-miR-765, and VIPR1 were identified as independent factors that affect the prognosis of hepatocellular carcinoma. The immune infiltration analyses revealed that lncRNA-AC079061.1 can alter the immune microenvironment and thus inhibit the development of HCC by regulating the expression of an immune-related gene (VIPR1). Methylation analyses demonstrated that VIPR1 expression is negatively related to the methylation level in HCC. Experimental results suggested that lncRNA-AC079061.1 and VIPR1 were frequently downregulated in HCC cells, while hsa-miR-765 was significantly upregulated. Moreover, the lncRNA-AC079061.1/VIPR1 axis suppressed the proliferation and invasion of HCC cells. CONCLUSION: The present study identified the lncRNA-AC079061.1/VIPR1 axis as a novel biomarker that inhibited the proliferation and invasion of hepatocellular carcinoma, affecting the ultimate disease outcome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Microambiente Tumoral
20.
Front Bioeng Biotechnol ; 10: 902524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782496

RESUMO

Microalgae biomass, as a promising alternative feedstock, can be refined into biodiesel, pharmaceutical, and food productions. However, the harvesting process for quality biomass still remains a main bottleneck due to its high energy demand. In this study, a novel technique integrating alkali-induced flocculation and electrolysis, named salt-bridge electroflocculation (SBEF) with non-sacrificial carbon electrodes is developed to promote recovery efficiency and cost savings. The results show that the energy consumption decreased to 1.50 Wh/g biomass with a high harvesting efficiency of 90.4% under 300 mA in 45 min. The mean particle size of algae flocs increased 3.85-fold from 2.75 to 10.59 µm, which was convenient to the follow-up processing. Another major advantage of this method is that the salt-bridge firmly prevented cells being destroyed by the anode's oxidation and did not bring any external contaminants to algal biomass and flocculated medium, which conquered the technical defects in electro-flocculation. The proposed SBEF technology could be used as a low cost process for efficient microalgae harvest with high quality biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...