Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.030
Filtrar
1.
J Endocrinol ; 244(1): 41-52, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539871

RESUMO

Protein arginine methyltransferase 5 (PRMT5), a symmetric arginine methyltransferase, regulates cell functions by influencing gene transcription through posttranslational modification of histones and non-histone proteins. PRMT5 interacts with multiple partners including menin, which controls beta cell homeostasis. However, the role of Prmt5 in pancreatic islets, particularly in beta cells, remains unclear. A mouse model with an islet-specific knockout (KO) of the Prmt5 gene was generated, and the influence of the Prmt5 excision on beta cells was investigated via morphologic and functional studies. Beta cell function was evaluated by glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test. Beta cell proliferation was evaluated by immunostaining. Gene expression change was determined by real-time qPCR. Molecular mechanisms were investigated in beta cells in vitro and in vivo in Prmt5 KO mice. The results show that islet-specific KO of Prmt5 reduced expression of the insulin gene and impaired glucose tolerance and GSIS in vivo. The mechanistic study indicated that PRMT5 is involved in the regulation of insulin gene transcription, likely via histone methylation-related chromatin remodeling. The reduced expression of insulin in beta cells in the Prmt5 KO mice may contribute to impaired glucose tolerance (IGT) and deficient GSIS in the mouse model. These results will provide new insights into exploring novel strategies to treat diabetes caused by insulin insufficiency.

2.
Food Chem ; : 125892, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31791724

RESUMO

In this study, we successfully knock-out the d-hordein component of barley storage protein using RNA-guided Cas9. Mutation frequencies of 25% and 14% at two different target sites were obtained. Homozygous mutant plants that were T-DNA free were identified in the T1 generation. Barley grains without d-hordein proteins from T2 seeds showed a significantly reduced grain size compared to the parent plant and control non-edited line. The protein matrix surrounding the starch granules was increased, whereas the starch granules themselves were decreased in size in the mutant plants compared to controls. The main effect of a lack of d-hordein was a considerable decrease in the prolamines and an increase in the glutenins. The changes of other grain composition included the increased starch content, amylose content, and ß-glucan content. The roles of d-hordein mutation on barley grain size and grain composition remain to be studied.

3.
Chemistry ; 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793069

RESUMO

Environmentally friendly metal-organic frameworks (MOFs) have gained considerable attention for their potential use as heterogeneous catalysts. Herein, two CuI -based MOFs, namely, [Cu4 Cl4 L]⋅CH3 OH⋅1.5 H2 O (1-Cl) and [Cu4 Br4 L]⋅DMF⋅0.5 H2 O (1-Br), were assembled with new functionalized thiacalix[4]arenes (L) and halogen anions X- (X=Cl and Br) under solvothermal conditions. Remarkably, catalysts 1-Cl and 1-Br exhibit great stability in aqueous solutions over a wide pH range. Significantly, MOFs 1-Cl and 1-Br, as recycled heterogeneous catalysts, are capable of highly efficient catalysis for click reactions in water. The MOF structures, especially the exposed active CuI sites and 1D channels, play a key role in the improved catalytic activities. In particular, their catalytic activities in water are greatly superior to those in organic solvents or even in mixed solvents. This work proposes an attractive route for the design and self-assembly of environmentally friendly MOFs with high catalytic activity and reusability in water.

4.
Acta Crystallogr C Struct Chem ; 75(Pt 12): 1658-1665, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802756

RESUMO

Because of its versatile coordination modes and strong coordination ability, the mercaptoacetic acid substituted 1,2,4-triazole 2-{[5-(pyridin-2-yl)-4H-1,2,4-triazol-3-yl]sulfanyl}acetic acid (H2L) was synthesized and characterized. Treatment of H2L with cobalt and nickel acetate afforded the dinuclear complexes {µ-3-[(carboxylatomethyl)sulfanyl]-5-(pyridin-2-yl)-4H-1,2,4-triazol-4-ido-κ2N1,N5:N2,O}bis[aqua(methanol-κO)cobalt(II)] methanol disolvate, [Co2(C9H6N4O2S)2(CH3OH)2(H2O)2]·2CH3OH (1), and {µ-3-[(carboxylatomethyl)sulfanyl]-5-(pyridin-2-yl)-4H-1,2,4-triazol-4-ido-κ2N1,N5:N2,O}bis[diaquanickel(II)] methanol disolvate dihydrate, [Ni2(C9H6N4O2S)2(H2O)4]·2CH3OH·2H2O (2), respectively. Complex 1 crystallized in the monoclinic space group P21/c, while 2 crystallized in the tetragonal space group I41/a. Single-crystal X-ray diffraction studies revealed that H2L is doubly deprotonated and acts as a tetradentate bridging ligand in complexes 1 and 2. For both of the obtained complexes, extensive hydrogen-bond interactions contribute to the formation of their three-dimensional supermolecular structures. Hirshfeld surface analysis was used to illustrate the intermolecular interactions. Additionally, the urease inhibitory activities of 1, 2 and H2L were investigated against jack bean urease, where the two complexes revealed strong urease inhibition activities.

5.
Acta Crystallogr C Struct Chem ; 75(Pt 12): 1690-1697, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802760

RESUMO

The new asymmetrical organic ligand 2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole (L, C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena-poly[[silver(I)-µ-2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole] hexafluoridophosphate], {[Ag(L)]PF6}n, catena-poly[[copper(I)-di-µ-iodido-copper(I)-bis(µ-2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole)] 1,4-dioxane monosolvate], {[Cu2I2(L)2]·C4H8O2}n, and catena-poly[[[dinitratocopper(II)]-bis(µ-2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole)]-methanol-water (1/1/0.65)], {[Cd(L)2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one-dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π-π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.

6.
Bioorg Chem ; : 103420, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31718890

RESUMO

A concise total synthesis of an exceedingly potent anti-inflammatory agent violacin A as well as the preparation of thirty analogues of this lead from commercially available orcinol are described. Highlights of our synthetic efforts involve Friedel-Crafts acylation, the regioselective etherification and esterification of phenolic hydroxyl groups, and Baker-Venkatamaran rearrangement to form basic skeleton of violacin A. The deprotection reaction with Pd-catalytic was involved to avoid the elimination of the hemiacetal hydroxyl at C2. In addition, all synthetic compounds were screened for anti-inflammatory activity against nitric oxide (NO) production using lipopolysaccharide (LPS)-induced Raw264.7 cells. A range of violacin A derivatives 11b, 11d, 11f, 12e, 12g, 13g, 17d-g exhibited stronger anti-inflammatory effect than that of violacin A. Notably, halogeno-benzyloxy substituent at C-7 were favourable for anti-inflammatory activities of violacin A derivatives. Additionally, Western blot results indicated halogeno-benzyloxy derivatives inhibited pro-inflammatory cytokines releases correlated with the suppression of NF-κB signaling pathway.

7.
J Comput Aided Mol Des ; 33(11): 973-981, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31758355

RESUMO

The Glucagon-like peptide 1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes and GLP-1R agonist-based therapies represent an effective approach which results in several GLP-1 analog drugs. However, the development of nonpeptidic agonist drugs targeting GLP-1R remains unsuccessful. A promising strategy aims to develop orally bioavailable, small-molecule positive allosteric modulators of GLP1-1R. Taking advantage of the recently reported cryo-EM structure of GLP-1R at its active state, we have performed structure-based screening studies which include potential allosteric binding site prediction and in silico screening of drug-like compounds, and conducted in vitro testing and site-specific mutagenesis studies. One compound with low molecular weight was confirmed as a positive allosteric modulator of GLP-1R as it enhances GLP-1's affinity and efficacy to human GLP-1R in a dose dependent manner. This compound also stimulates insulin secretion synergistically with GLP-1. With the molecular weight of 399, this compound represents one of the smallest known GLP-1R PAMs, and demonstrates other favorable drug-like properties. Site-specific mutagenesis studies confirmed that the binding site of this compound partially overlaps with that of a known antagonist in the transmembrane domain. These results demonstrate that structure-based approach is useful for discovering nonpeptidic allosteric modulators of GLP-1R and the compound reported here is valuable for further drug development.

8.
Plant Cell Physiol ; 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747007

RESUMO

One of the most important roles of plant roots is to take up mineral elements for their growth. Although several genes involved in root growth have been identified, the association between root structure and mineral element uptake is less investigated. Here, we isolated a rice mutant (dice1, defective in cell elongation 1) with short root phenotype. This mutant was characterized by partial defect in the formation of root outer cell layers. Mapping of the responsible gene revealed that the short-root phenotype in the mutant was caused by a single nucleotide substitution of a gene encoding a membrane-anchored endo-1,4-beta-glucanase (OsGlu3). The growth of both the roots and shoots was partially recovered with increasing strength of nutrient solution and glucose in the mutant. The mutant showed a decreased uptake (normalized by root dry weight) for Mg, Mn, Fe, Cu, Zn, Cd, As and Ge, but increased uptake for K and Ca. The expression level of some transporter genes including OsLsi1 and OsLsi2 for Si uptake and OsNramp5 for Mn uptake was significantly decreased in the mutant compared with the wild-type rice. Furthermore, the cellular localization of OsLsi1 was altered; OsLsi1 localized at the root exodermis of the wild-type rice was changed to be localized to other cell layers of the mutant roots. However, this localization became normal in the presence of exogenous glucose in the mutant. Our results indicate that a normal root structure is required for maintaining the expression and localization of transporters involved in the mineral element uptake.

9.
New Phytol ; 2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31758804

RESUMO

Climate change will increase frequency of drought and flooding, which threaten global crop productivity and food security. Rice (Oryza sativa) is unique in that it is able to grow in both flooded and upland conditions, which have large differences in the concentrations and chemical forms of mineral elements available to plants. To comprehensively understand the mechanisms of rice for coping with different water status, we performed ionomics and transcriptomics analysis of the roots, nodes and leaves of rice grown in flooded and upland conditions. Focusing the analysis on genes encoding proteins involved in transport functions for mineral elements, it was found that although rice plants maintained similar level of each element in the shoots for optimal growth, different transporter for mineral elements were utilized for nitrogen, iron, copper and zinc in order to deal with different soil water conditions. For example, under flooded condition, rice roots take up nitrogen by using transporters for both ammonium (OsAMT1/2) and nitrate (OsNPF2.4, OsNRT1.1A, and OsNRT2.3), whereas under upland condition, nitrogen uptake is mediated by different nitrate transporters (OsNRT1.1B and OsNRT1.5A). This study shows that rice possess plastic transport systems for mineral element in response to different water conditions (upland and flooding).

10.
Mol Cancer ; 18(1): 170, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771591

RESUMO

BACKGROUND: The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in primary prostate cancer, but how SPOP mutations contribute to prostate cancer pathogenesis remains poorly understood. Stress granules (SG) assembly is an evolutionarily conserved strategy for survival of cells under stress, and often upregulated in human cancers. We investigated the role of SPOP mutations in aberrant activation of the SG in prostate cancer and explored the relevanve of the mechanism in therapy resistance. METHODS: We identified SG nucleating protein Caprin1 as a SPOP interactor by using the yeast two hybrid methods. A series of functional analyses in cell lines, patient samples, and xenograft models were performed to investigate the biological significance and clinical relevance of SPOP regulation of SG signaling in prostate cancer. RESULTS: The cytoplasmic form of wild-type (WT) SPOP recognizes and triggers ubiquitin-dependent degradation of Caprin1. Caprin1 abundance is elevated in SPOP-mutant expressing prostate cancer cell lines and patient specimens. SPOP WT suppresses SG assembly, while the prostate cancer-associated mutants enhance SG assembly in a Caprin1-dependent manner. Knockout of SPOP or expression of prostate cancer-associated SPOP mutants conferred resistance to death caused by SG inducers (e.g. docetaxel, sodium arsenite and H2O2) in prostate cancer cells. CONCLUSIONS: SG assembly is aberrantly elevated in SPOP-mutated prostate cancer. SPOP mutations cause resistance to cellular stress induced by chemtherapeutic drug such as docetaxel in prostate cancer.

11.
J Recept Signal Transduct Res ; : 1-9, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782334

RESUMO

Context: Cell death and inflammation response have been found to the primary features of acute kidney injury.Objective: The aim of our study is to figure out the molecular mechanism by which hypoxia-reoxygenation injury affects the viability of tubular cell death.Materials and methods: HK2 cells were treated with hypoxia-reoxygenation injury in vitro. Pathway agonist was added into the medium of HK2 cell to activate MAPK-EEK-CREB axis.Results: Hypoxia-reoxygenation injury reduced HK2 cell viability and increased cell apoptosis rate in vitro. Besides, inflammation response has been found to be induced by hypoxia-reoxygenation injury in HK2 cells in vitro. In addition, MAPK-ERK-CREB pathway was deactivated during hypoxia-reoxygenation injury. Interestingly, activation of MAPK-ERK-CREB pathway could attenuate hypoxia-reoxygenation injury-mediated HK2 cell apoptosis and inflammation. Mechanistically, MAPK-ERK-CREB pathway activation upregulated the transcription of anti-apoptotic genes and reduced the levels of pro-apoptotic factors under hypoxia-reoxygenation injury.Conclusions: Our results report a novel signaling pathway responsible for acute kidney injury-related tubular cell death. Activation of MAPK-ERK-CREB signaling could protect tubular cell against hypoxia-reoxygenation-related cell apoptosis and inflammation response.

12.
J Diabetes Res ; 2019: 7304140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687408

RESUMO

Insulin antibody (IA) may potentially affect a patient's glycemic control due to its variability in both binding and/or releasing insulin. However, the association between IA titer and daily glycemic variability (GV) is still unknown. We thus performed this cross-sectional, retrospective case-control study to assess the relationship between IA titer and mean amplitude glycemic excursion (MAGE) in type 2 diabetes mellitus (T2DM) patients using a continuous glucose monitoring (CGM) system. We recruited 100 eligible patients (IA > 5%, IA positive) and divided them into two groups-a low (L) group and a high (H) group-based on their IA titer. The control (C) group consisted of 47 patients (IA ≤ 5%, IA negative) matched for age, BMI, gender, and glycosylated hemoglobin A1c (HbA1c). The CGM determined the GV of enrolled patients. The primary outcome was the relationship between the IA titer and the MAGE, and the secondary outcome was the differences of GV among the three groups. We found that patients in the H group had higher levels of blood glucose fluctuation parameters than those in the L and C groups. The Ln(IA) was positively correlated with Ln(MAGE) even after adjusting for age, gender, BMI, HbA1c, and fasting and postprandial C-peptide(r = 0.423, p < 0.001). Multiple linear stepwise regression analysis revealed that Ln(IA) was an independent factor of Ln(MAGE) (beta = 0.405, p < 0.001). In conclusion, the higher circulating IA titer was associated with increased MAGE in T2DM patients, indicating that those patients with elevated IA titer should receive GV assessment and individualized treatment.

13.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726763

RESUMO

Pentatricopeptide-repeat (PPR) proteins were identified as a type of nucleus coding protein that is composed of multiple tandem repeats. It has been reported that PPR genes play an important role in RNA editing, plant growth and development, and abiotic stresses in plants. However, the functions of PPR proteins remain largely unknown in soybean. In this study, 179 DYW subgroup PPR genes were identified in soybean genome (Glycine max Wm82.a2.v1). Chromosomal location analysis indicated that DYW subgroup PPR genes were mapped to all 20 chromosomes. Phylogenetic relationship analysis revealed that DYW subgroup PPR genes were categorized into three distinct Clusters (I to III). Gene structure analysis showed that most PPR genes were featured by a lack of intron. Gene duplication analysis demonstrated 30 PPR genes (15 pairs; ~35.7%) were segmentally duplicated among Cluster I PPR genes. Furthermore, we validated the mRNA expression of three genes that were highly up-regulated in soybean drought- and salt-induced transcriptome database and found that the expression levels of GmPPR4 were induced under salt and drought stresses. Under drought stress condition, GmPPR4-overexpressing (GmPPR4-OE) plants showed delayed leaf rolling; higher content of proline (Pro); and lower contents of H2O2, O2- and malondialdehyde (MDA) compared with the empty vector (EV)-control plants. GmPPR4-OE plants exhibited increased transcripts of several drought-inducible genes compared with EV-control plants. Our results provided a comprehensive analysis of the DYW subgroup PPR genes and an insight for improving the drought tolerance in soybean.

14.
Biomark Med ; 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729251

RESUMO

Aim: This study profiled differentially expressed long noncoding RNAs (lncRNAs) in lung squamous cell carcinoma (LSCC) to predict LSCC overall survival (OS) using The Cancer Genome Atlas data. Materials & methods: The RNA-seq and clinical dataset of 475 LSCC patients was retrieved from The Cancer Genome Atlas database and statistically analyzed. Results: There were 67 upregulated and 32 downregulated lncRNAs in LSCCs and 12 lncRNAs associated with OS. The seven-lncRNA signature was associated with poor OS and RP11-150O12.6 and CTA-384D8.35 were associated with better OS (p < 0.001). The seven lncRNAs-mRNA interaction network analysis showed their association with 187 protein-coding genes for cancer development, cell migration, adhesion, proliferation, apoptosis, angiogenesis and the MAPK signaling pathways. Conclusion: This seven-lncRNA signature is useful to predict LSCC OS.

15.
Emerg Microbes Infect ; 8(1): 1584-1592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682199

RESUMO

The genetic and/or antigenic differences between street rabies virus (RABV) and vaccine strains could potentially affect effectiveness of rabies vaccines. As such, it is important to continue monitoring the glycoprotein (G) of the street isolates. All RABVG sequences in public database were retrieved and analysed. Using a pseudovirus system, we investigated 99 naturally occurring mutants for their reactivities to well-characterized neutralizing monoclonal antibodies (mAbs) and vaccine-induced antisera. A divergence in G sequences was found between vaccine strains and recent street isolates, with mutants demonstrating resistance to neutralizing mAbs and vaccine-induced antibodies. Moreover, antigenic variants were observed in a wide range of animal hosts and geographic locations, with most of them emerging since 2010. As the number of antigenic variants has increased in recent years, close monitoring on street isolates should be strengthened.

16.
BMC Plant Biol ; 19(1): 506, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747904

RESUMO

BACKGROUND: Ethylene-responsive factors (ERFs) play important roles in plant growth and development and the response to adverse environmental factors, including abiotic and biotic stresses. RESULTS: In the present study, we identified 160 soybean ERF genes distributed across 20 chromosomes that could be clustered into eight groups based on phylogenetic relationships. A highly ABA-responsive ERF gene, GmERF75, belonging to Group VII was further characterized. Subcellular localization analysis showed that the GmERF75 protein is localized in the nucleus, and qRT-PCR results showed that GmERF75 is responsive to multiple abiotic stresses and exogenous hormones. GmERF75-overexpressing Arabidopsis lines showed higher chlorophyll content compared to WT and mutants under osmotic stress. Two independent Arabidopsis mutations of AtERF71, a gene homologous to GmERF75, displayed shorter hypocotyls, and overexpression of GmERF75 in these mutants could rescue the short hypocotyl phenotypes. Overexpressing GmERF75 in soybean hairy roots improved root growth under exogenous ABA and salt stress. CONCLUSIONS: These results suggested that GmERF75 is an important plant transcription factor that plays a critical role in enhancing osmotic tolerance in both Arabidopsis and soybean.

17.
RNA ; 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690584

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer (BC) subtypes with a poor prognosis and high recurrence rate. Recent studies have identified vital roles played by several lncRNAs (long noncoding RNAs) in BC pathobiology. Cell type-specific expression of lncRNAs and their potential role in regulating the expression of oncogenic and tumor suppressor genes have made them promising cancer drug targets. By performing a transcriptome screen in an isogenic TNBC/basal sub-type BC progression cell line model, we recently reported ~1800 lncRNAs that display aberrant expression during breast cancer progression. Mechanistic studies on one such nuclear-retained lncRNA, linc02095, reveal that it promotes breast cancer proliferation by facilitating the expression of oncogenic transcription factor, SOX9. Both linc02095 and SOX9 display co-regulated expression in BC patients as well in basal sub-type BC cell lines. Knockdown of linc02095 results in decreased BC cell proliferation, whereas its overexpression promotes cells proliferation. Linc02095-depleted cells display reduced expression of SOX9 concomitant with reduced RNA polymerase II occupancy at the SOX9 gene body as well as defective SOX9 mRNA export, implying that linc02095 positively regulates SOX9 transcription and mRNA export. Finally, we identify a positive feedback loop in BC cells that controls the expression of both linc02095 and SOX9. Thus, our results unearth tumor-promoting activities of a nuclear lncRNA linc02095 by facilitating the expression of key oncogenic transcription factor in BC.

18.
Nat Commun ; 10(1): 5069, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699985

RESUMO

Higher-order genome organization and its variation in different cellular conditions remain poorly understood. Recent high-coverage genome-wide chromatin interaction mapping using Hi-C has revealed spatial segregation of chromosomes in the human genome into distinct subcompartments. However, subcompartment annotation, which requires Hi-C data with high sequencing coverage, is currently only available in the GM12878 cell line, making it impractical to compare subcompartment patterns across cell types. Here we develop a computational approach, SNIPER (Subcompartment iNference using Imputed Probabilistic ExpRessions), based on denoising autoencoder and multilayer perceptron classifier to infer subcompartments using typical Hi-C datasets with moderate coverage. SNIPER accurately reveals subcompartments using moderate coverage Hi-C datasets and outperforms an existing method that uses epigenomic features in GM12878. We apply SNIPER to eight additional cell lines and find that chromosomal regions with conserved and cell-type specific subcompartment annotations have different patterns of functional genomic features. SNIPER enables the identification of subcompartments without high-coverage Hi-C data and provides insights into the function and mechanisms of spatial genome organization variation across cell types.

19.
Plant Cell Environ ; 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31724184

RESUMO

Silicon (Si) accumulation in shoots differs greatly with plant species, but the molecular mechanisms for this interspecific difference are unknown. Here, we isolated homologous genes of rice Si influx (SlLsi1) and efflux (SlLsi2) transporter genes in tomato (Solanum lycopersicum L.) and functionally characterized these genes. SlLsi1 showed transport activity for Si when expressed in both rice lsi1 mutant and Xenopus laevis oocytes. SlLsi1 was constitutively expressed in the roots. Immunostaining showed that SlLsi1 was localized at the plasma membrane of both root tip and basal region without polarity. Furthermore, overexpression of SlLsi1 in tomato increased Si concentration in the roots and root cell sap, but did not alter the Si concentration in the shoots. By contrast, two Lsi2-like proteins did not show efflux transport activity for Si in Xenopus oocytes. However, when functional CsLsi2 from cucumber was expressed in tomato, the Si uptake was significantly increased, resulting in higher Si accumulation in leaves and enhanced tolerance of leaves to water deficit and high temperature. Our results suggest that the low Si accumulation in tomato is attributed to the lack of functional Si efflux transporter Lsi2 required for active Si uptake although SlLsi1 is functional.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31724511

RESUMO

Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation are effective to prevent and control infections by pathogenic E. coli in the intestine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA