Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 17(10): 1084-1090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36138204

RESUMO

Thermoelectric effects in metals are typically small due to the nearly perfect particle-hole symmetry around their Fermi surface. Furthermore, thermo-phase effects and linear thermoelectricity in superconducting systems have been identified only when particle-hole symmetry is explicitly broken, since thermoelectric effects were considered impossible in pristine superconductors. Here, we experimentally demonstrate that superconducting tunnel junctions develop a very large bipolar thermoelectricity in the presence of a sizable thermal gradient thanks to spontaneous particle-hole symmetry breaking. Our junctions show Seebeck coefficients of up to ±300 µV K-1, which is comparable with quantum dots and roughly 105 times larger than the value expected for normal metals at subkelvin temperatures. Moreover, by integrating our junctions into a Josephson interferometer, we realize a bipolar thermoelectric Josephson engine generating phase-tunable electric powers of up to ~140 nW mm-2. Notably, our device implements also the prototype for a persistent thermoelectric memory cell, written or erased by current injection. We expect that our findings will lead to applications in superconducting quantum technologies.

2.
Nano Lett ; 21(24): 10309-10314, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851117

RESUMO

Recent experiments have shown the possibility of tuning the transport properties of metallic nanosized superconductors through a gate voltage. These results renewed the longstanding debate on the interaction between electrostatic fields and superconductivity. Indeed, different works suggested competing mechanisms as the cause of the effect: an unconventional electric field-effect or quasiparticle injection. Here, we provide conclusive evidence for the electrostatic-field-driven control of the supercurrent in metallic nanosized superconductors, by realizing ionic-gated superconducting field-effect nanotransistors (ISFETs) where electron injection is impossible. Our Nb ISFETs show giant suppression of the superconducting critical current of up to ∼45%. Moreover, the bipolar supercurrent suppression observed in different ISFETs, together with invariant critical temperature and normal-state resistance, also excludes conventional charge accumulation/depletion. Therefore, the microscopic explanation of this effect calls upon a novel theory able to describe the nontrivial interaction of static electric fields with conventional superconductivity.

3.
Nat Commun ; 12(1): 5200, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465775

RESUMO

Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, scalable and fast superconducting memories are not implemented. Here, we propose a fully superconducting memory cell based on the hysteretic phase-slip transition existing in long aluminum nanowire Josephson junctions. Embraced by a superconducting ring, the memory cell codifies the logic state in the direction of the circulating persistent current, as commonly defined in flux-based superconducting memories. But, unlike the latter, the hysteresis here is a consequence of the phase-slip occurring in the long weak link and associated to the topological transition of its superconducting gap. This disentangles our memory scheme from the large-inductance constraint, thus enabling its miniaturization. Moreover, the strong activation energy for phase-slip nucleation provides a robust topological protection against stochastic phase-slips and magnetic-flux noise. These properties make the Josephson phase-slip memory a promising solution for advanced superconducting classical logic architectures or flux qubits.

4.
Nano Lett ; 19(9): 6263-6269, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31461290

RESUMO

Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (Is) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction, the maximum achievable total Is is suppressed down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry, and single-photon detection.

5.
ACS Nano ; 13(7): 7871-7876, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31244044

RESUMO

We demonstrate proximity-based all-metallic mesoscopic superconductor-normal metal-superconductor (SNS) field-effect controlled Josephson transistors (SNS-FETs) and show their full characterization from the critical temperature Tc down to 50 mK in the presence of both electric and magnetic fields. The ability of a static electric field-applied by means of a lateral gate electrode-to suppress the critical current Is in a proximity-induced superconductor is proven for both positive and negative gate voltage values. Is reached typically about one-third of its initial value, saturating at high gate voltages. The transconductance of our SNS-FETs obtains values as high as 100 nA/V at 100 mK. On the fundamental physics side, our results suggest that the mechanism at the basis of the observed phenomenon is quite general and does not rely on the existence of a true pairing potential, but rather the presence of superconducting correlations is enough for the effect to occur. On the technological side, our findings widen the family of materials available for the implementation of all-metallic field-effect transistors to synthetic proximity-induced superconductors.

6.
Nano Lett ; 19(6): 3634-3640, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31095394

RESUMO

X-ray diffraction is measured on individual bilayer and multilayer graphene single-crystals and combined with electrochemically induced lithium intercalation. In-plane Bragg peaks are observed by grazing incidence diffraction. Focusing the incident beam down to an area of about 10 µm × 10 µm, individual flakes are probed by specular X-ray reflectivity. By deploying a recursive Parratt algorithm to model the experimental data, we gain access to characteristic crystallographic parameters of the samples. Notably, it is possible to directly extract the bi/multilayer graphene c-axis lattice parameter. The latter is found to increase upon lithiation, which we control using an on-chip peripheral electrochemical cell layout. These experiments demonstrate the feasibility of in situ X-ray diffraction on individual, micron-sized single crystallites of few- and bilayer two-dimensional materials.


Assuntos
Grafite/química , Lítio/química , Nanoestruturas/química , Algoritmos , Nanoestruturas/ultraestrutura , Difração de Raios X , Raios X
7.
Nat Nanotechnol ; 13(9): 802-805, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967460

RESUMO

In their original formulation of superconductivity, the London brothers predicted1 the exponential suppression of an electrostatic field inside a superconductor over the so-called London penetration depth2-4, λL. Despite a few experiments indicating hints of perturbation induced by electrostatic fields5-7, no clue has been provided so far on the possibility to manipulate metallic superconductors via the field effect. Here, we report field-effect control of the supercurrent in all-metallic transistors made of different Bardeen-Cooper-Schrieffer superconducting thin films. At low temperature, our field-effect transistors show a monotonic decay of the critical current under increasing electrostatic field up to total quenching for gate voltage values as large as ±40 V in titanium-based devices. This bipolar field effect persists up to ~85% of the critical temperature (~0.41 K), and in the presence of sizable magnetic fields. A similar behaviour is observed in aluminium thin-film field-effect transistors. A phenomenological theory accounts for our observations, and points towards the interpretation in terms of an electric-field-induced perturbation propagating inside the superconducting film. In our understanding, this affects the pairing potential and quenches the supercurrent. These results could represent a groundbreaking asset for the realization of all-metallic superconducting field-effect electronics and leading-edge quantum information architectures8,9.

8.
Nano Lett ; 18(7): 4195-4199, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894197

RESUMO

Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric-field-induced control of charge-carrier concentration to modulate the channel superconducting properties. Despite the fact that the field-effect is believed to be ineffective for superconducting metals, recent experiments showed electric-field-dependent modulation of the critical current ( IC) in a fully metallic transistor. However, the grounding mechanism of this phenomenon is not completely understood. Here, we show the experimental realization of Ti-based Dayem bridge field-effect transistors (DB-FETs) able to control the IC of the superconducting channel. Our easy fabrication process for DB-FETs show symmetric full suppression of IC for applied critical gate voltages as low as VGC ≃ ±8 V at temperatures reaching about the 85% of the record critical temperature, TC ≃ 550 mK, for titanium. The gate-independent TC and normal-state resistance ( RN) coupled with the increase of resistance in the superconducting state ( RS) for gate voltages close to the critical value ( VGC) suggest the creation of field-effect induced metallic puddles in the superconducting sea. Our devices show extremely high values of transconductance (| gmMAX| ≃ 15 µA/V at VG ≃ ±6.5 V) and variations of Josephson kinetic inductance ( LK) with VG of 2 orders of magnitude. Therefore, the DB-FET appears as an ideal candidate for the realization of superconducting electronics, superconducting qubits, and tunable interferometers as well as photon detectors.

9.
Nano Lett ; 18(3): 1764-1769, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29444407

RESUMO

A fundamental aspect of electronics is the ability to distribute a charge current among different terminals. On the other hand, despite the great interest in dissipation, storage, and conversion of heat in solid state structures, the control of thermal currents at the nanoscale is still in its infancy. Here, we show the experimental realization of a phase-tunable thermal router able to control the spatial distribution of an incoming heat current, thus providing the possibility of tuning the electronic temperatures of two output terminals. This ability is obtained thanks to a direct current superconducting quantum interference device (dc SQUID), which can tune the coherent component of the electronic heat currents flowing through its Josephson junctions. By varying the external magnetic flux and the bath temperature, the SQUID allows us to regulate the size and the direction of the thermal gradient between two drain electrodes. Our results offer new opportunities for all microcircuits requiring an accurate energy management, including electronic coolers, quantum information architectures, and thermal logic components.

10.
Nat Nanotechnol ; 12(9): 895-900, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28581509

RESUMO

Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

11.
Nano Lett ; 16(11): 7037-7045, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27700104

RESUMO

Newly discovered van der Waals materials like MoS2, WSe2, hexagonal boron nitride (h-BN), and recently C2N have sparked intensive research to unveil the quantum behavior associated with their 2D structure. Of great interest are 2D materials that host single quantum emitters. h-BN, with a band gap of 5.95 eV, has been shown to host single quantum emitters which are stable at room temperature in the UV and visible spectral range. In this paper we investigate correlations between h-BN structural features and emitter location from bulk down to the monolayer at room temperature. We demonstrate that chemical etching and ion irradiation can generate emitters in h-BN. We analyze the emitters' spectral features and show that they are dominated by the interaction of their electronic transition with a single Raman active mode of h-BN. Photodynamics analysis reveals diverse rates between the electronic states of the emitter. The emitters show excellent photo stability even under ambient conditions and in monolayers. Comparing the excitation polarization between different emitters unveils a connection between defect orientation and the h-BN hexagonal structure. The sharp spectral features, color diversity, room-temperature stability, long-lived metastable states, ease of fabrication, proximity of the emitters to the environment, outstanding chemical stability, and biocompatibility of h-BN provide a completely new class of systems that can be used for sensing and quantum photonics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA