Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nat Ecol Evol ; 8(3): 477-488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332027

RESUMO

Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species' ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species' climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.


Assuntos
Mudança Climática , Espécies Introduzidas , Filogenia , Clima Tropical , Plantas
2.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351066

RESUMO

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Assuntos
Cidadania , Ecossistema , Humanos , Tamanho do Genoma , Espécies Introduzidas , Ecologia , Biodiversidade , Plantas/genética
3.
Nat Commun ; 14(1): 6244, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828007

RESUMO

Darwin's naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin's naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin's naturalization conundrum.


Assuntos
Ecossistema , Magnoliopsida , Humanos , Cidadania , Espécies Introduzidas , Plantas
4.
Sci Adv ; 9(40): eadi1897, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792943

RESUMO

Plant introductions outside their native ranges by humans have led to substantial ecological consequences. While we have gained considerable knowledge about intercontinental introductions, the distribution and determinants of intracontinental aliens remain poorly understood. Here, we studied naturalized (i.e., self-sustaining) intracontinental aliens using native and alien floras of 243 mainland regions in North America, South America, Europe, and Australia. We revealed that 4510 plant species had intracontinental origins, accounting for 3.9% of all plant species and 56.7% of all naturalized species in these continents. In North America and Europe, the numbers of intracontinental aliens peaked at mid-latitudes, while the proportion peaked at high latitudes in Europe. Notably, we found predominant poleward naturalization, primarily due to larger native species pools in low-latitudes. Geographic and climatic distances constrained the naturalization of intracontinental aliens in Australia, Europe, and North America, but not in South America. These findings suggest that poleward naturalizations will accelerate, as high latitudes become suitable for more plant species due to climate change.


Assuntos
Cidadania , Mudança Climática , Humanos , Europa (Continente) , Plantas , América do Norte , Ecossistema
5.
Nat Ecol Evol ; 7(10): 1633-1644, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652998

RESUMO

Human activities are causing global biotic redistribution, translocating species and providing them with opportunities to establish populations beyond their native ranges. Species originating from certain global regions, however, are disproportionately represented among naturalized aliens. The evolutionary imbalance hypothesis posits that differences in absolute fitness among biogeographic divisions determine outcomes when biotas mix. Here, we compile data from native and alien distributions for nearly the entire global seed plant flora and find that biogeographic conditions predicted to drive evolutionary imbalance act alongside climate and anthropogenic factors to shape flows of successful aliens among regional biotas. Successful aliens tend to originate from large, biodiverse regions that support abundant populations and where species evolve against a diverse backdrop of competitors and enemies. We also reveal that these same native distribution characteristics are shared among the plants that humans select for cultivation and economic use. In addition to influencing species' innate potentials as invaders, we therefore suggest that evolutionary imbalance shapes plants' relationships with humans, impacting which species are translocated beyond their native distributions.


Assuntos
Biodiversidade , Espécies Introduzidas , Humanos , Clima , Plantas , Sementes
6.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459510

RESUMO

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Sementes , Geologia
7.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37438886

RESUMO

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Assuntos
Ecossistema , Traqueófitas , Tamanho do Genoma , Cidadania , Ploidias , Espécies Introduzidas , DNA
8.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045818

RESUMO

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Assuntos
Formigas , Ecossistema , Animais , Espécies Introduzidas , Incidência , Biodiversidade , Mamíferos
9.
New Phytol ; 237(4): 1432-1445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36375492

RESUMO

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.


Assuntos
Biodiversidade , Ecossistema , Humanos , Filogenia , Clima , Modelos Lineares , Plantas
10.
Biol Invasions ; 24(11): 3395-3421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277057

RESUMO

Community science (also often referred to as citizen science) provides a unique opportunity to address questions beyond the scope of other research methods whilst simultaneously engaging communities in the scientific process. This leads to broad educational benefits, empowers people, and can increase public awareness of societally relevant issues such as the biodiversity crisis. As such, community science has become a favourable framework for researching alien species where data on the presence, absence, abundance, phenology, and impact of species is important in informing management decisions. However, uncertainties arising at different stages can limit the interpretation of data and lead to projects failing to achieve their intended outcomes. Focusing on alien species centered community science projects, we identified key research questions and the relevant uncertainties that arise during the process of developing the study design, for example, when collecting the data and during the statistical analyses. Additionally, we assessed uncertainties from a linguistic perspective, and how the communication stages among project coordinators, participants and other stakeholders can alter the way in which information may be interpreted. We discuss existing methods for reducing uncertainty and suggest further solutions to improve data reliability. Further, we make suggestions to reduce the uncertainties that emerge at each project step and provide guidance and recommendations that can be readily applied in practice. Reducing uncertainties is essential and necessary to strengthen the scientific and community outcomes of community science, which is of particular importance to ensure the success of projects aimed at detecting novel alien species and monitoring their dynamics across space and time. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-022-02858-8.

11.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253544

RESUMO

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Assuntos
Colonialismo , Espécies Introduzidas , Plantas
12.
PLoS Biol ; 20(8): e3001729, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35972940

RESUMO

Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.


Assuntos
Biodiversidade , Espécies Introduzidas , Ecossistema , Atividades Humanas , Humanos
13.
Methods Ecol Evol ; 13(5): 1073-1081, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35909503

RESUMO

Large-scale biodiversity data, for example, on species distribution and richness information, are being mobilized and becoming available at an increasing rate. Interactive web applications like atlases have been developed to visualize available datasets and make them accessible to a wider audience. Web mapping tools are changing rapidly, and different underlying concepts have been developed to visualize datasets at a high cartographic standard.Here, we introduce the Combined Atlas Framework for the development of interactive web atlases for ecological data visualization. We combine two existing approaches: the five stages of the user-centred design approach for web mapping applications and the three U approach for interface success.Subsequently, we illustrate the use of this framework by developing the Atlas of Plant Invasions based on the Global Naturalized Alien Flora (GloNAF) database. This case study illustrates how the newly developed Combined Atlas Framework with a user-centred design philosophy can generate measurable success through communication with the target user group, iterative prototyping and competitive analysis of other existing web mapping approaches.The framework is useful in creating an atlas that employs user feedback to determine usability and utility features within an interactive atlas system. Finally, this framework will enable a better-informed development process of future visualization and dissemination of biodiversity data through web mapping applications and interactive atlases.

14.
Nat Plants ; 8(8): 906-914, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953709

RESUMO

Darwin's naturalization hypothesis predicts successful alien invaders to be distantly related to native species, whereas his pre-adaptation hypothesis predicts the opposite. It has been suggested that depending on the invasion stage (that is, introduction, naturalization and invasiveness), both hypotheses, now known as Darwin's naturalization conundrum, could hold true. We tested this by analysing whether the likelihood of introduction for cultivation, as well as the subsequent stages of naturalization and spread (that is, becoming invasive) of species alien to Southern Africa are correlated with their phylogenetic distance to the native flora of this region. Although species are more likely to be introduced for cultivation if they are distantly related to the native flora, the probability of subsequent naturalization was higher for species closely related to the native flora. Furthermore, the probability of becoming invasive was higher for naturalized species distantly related to the native flora. These results were consistent across three different metrics of phylogenetic distance. Our study reveals that the relationship between phylogenetic distance to the native flora and the success of an alien species changes from one invasion stage to the other.


Assuntos
Ecossistema , Espécies Introduzidas , Adaptação Fisiológica , Filogenia , Plantas
15.
Nat Commun ; 12(1): 7290, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911960

RESUMO

Regional species assemblages have been shaped by colonization, speciation and extinction over millions of years. Humans have altered biogeography by introducing species to new ranges. However, an analysis of how strongly naturalized plant species (i.e. alien plants that have established self-sustaining populations) affect the taxonomic and phylogenetic uniqueness of regional floras globally is still missing. Here, we present such an analysis with data from native and naturalized alien floras in 658 regions around the world. We find strong taxonomic and phylogenetic floristic homogenization overall, and that the natural decline in floristic similarity with increasing geographic distance is weakened by naturalized species. Floristic homogenization increases with climatic similarity, which emphasizes the importance of climate matching in plant naturalization. Moreover, floristic homogenization is greater between regions with current or past administrative relationships, indicating that being part of the same country as well as historical colonial ties facilitate floristic exchange, most likely due to more intensive trade and transport between such regions. Our findings show that naturalization of alien plants threatens taxonomic and phylogenetic uniqueness of regional floras globally. Unless more effective biosecurity measures are implemented, it is likely that with ongoing globalization, even the most distant regions will lose their floristic uniqueness.


Assuntos
Plantas/classificação , Biodiversidade , Clima , Ecossistema , Espécies Introduzidas/estatística & dados numéricos , Filogenia
16.
Commun Biol ; 4(1): 1128, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561537

RESUMO

Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.


Assuntos
Biodiversidade , Micorrizas/fisiologia , Dispersão Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Simbiose
17.
Biodivers Data J ; 9: e67318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385884

RESUMO

BACKGROUND: The Pacific Region has the highest density of naturalised plant species worldwide, which makes it an important area for research on the ecology, evolution and biogeography of biological invasions. While different data sources on naturalised plant species exist for the Pacific, there is no taxonomically and spatially harmonised database available for different subsets of species and islands. A comprehensive, accessible database containing the distribution of naturalised vascular plant species in the Pacific will enable new basic and applied research for researchers and will be an important information source for practitioners working in the Region. NEW INFORMATION: Here, we present PacIFlora, an updated and taxonomically standardised list of naturalised species, their unified nativeness, cultivation and invasive status and their distribution across the Pacific Ocean, including harmonised location denoination. This list is based on the two largest databases on naturalised plants for the Region, specifically the Pacific Island Ecosystems at Risk (PIER) and the Global Naturalised Alien Flora (GloNAF) databases. We provide an outlook for how this database can contribute to numerous research questions and conservation efforts.

18.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050023

RESUMO

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Assuntos
Espécies Introduzidas , Filogeografia , Plantas/classificação , Ecossistema , Europa (Continente)
19.
Ecol Lett ; 24(8): 1655-1667, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34031959

RESUMO

With globalisation facilitating the movement of plants and seeds beyond the native range, preventing potentially harmful introductions requires knowledge of what drives the successful establishment and spread of alien plants. Here, we examined global-scale relationships between naturalisation success (incidence and extent) and invasiveness, soil seed bank properties (type and densities) and key species traits (seed mass, seed dormancy and life form) for 2350 species of angiosperms. Naturalisation and invasiveness were strongly associated with the ability to form persistent (vs. transient) seed banks but relatively weakly with seed bank densities and other traits. Our findings suggest that seed bank persistence is a trait that better captures the ability to become naturalised and invasive compared to seed traits more widely available in trait databases. Knowledge of seed persistence can contribute to our ability to predict global naturalisation and invasiveness and to identify potentially invasive flowering plants before they are introduced.


Assuntos
Magnoliopsida , Banco de Sementes , Dormência de Plantas , Sementes , Solo
20.
New Phytol ; 229(5): 2998-3008, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078849

RESUMO

Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.


Assuntos
Ecossistema , Plantas , Geografia , Espécies Introduzidas , Filogenia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...