Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 115: 104309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567615

RESUMO

Penicillium camemberti is a domesticated species adapted to the dairy environment, which is used as adjunct cultures to ripen soft cheeses. A recent population genomics analysis on P. camemberti revealed that P. camemberti is a clonal lineage with two varieties almost identical genetically but with contrasting phenotypes in terms of growth, color, mycotoxin production and inhibition of contaminants. P. camemberti variety camemberti is found on Camembert and Brie cheeses, and P. camemberti variety caseifulvum is mainly found on other cheeses like Saint-Marcellin and Rigotte de Condrieu. This study aimed to evaluate the impact of water activity (aw) reduced by sodium chloride (NaCl) and the increase of carbon dioxide (CO2) partial pressure, on conidial germination and growth of two varieties of P. camemberti: var. Camemberti and var. Caseifulvum. Mathematical models were used to describe the responses of P. camemberti strains to both abiotic factors. The results showed that these genetically distant strains had similar responses to increase in NaCl and CO2 partial pressure. The estimated cardinal values were very close between the strains although all estimated cardinal values were significantly different (Likelihood ratio tests, pvalue = 0.05%). These results suggest that intraspecific variability could be more exacerbated during fungal growth compared with conidial germination, especially in terms of macroscopic morphology. Indeed, var. Caseifulvum seemed to be more sensitive to an increase of CO2 partial pressure, as shown by the fungal morphology, with the occurrence of irregular outgrowths, while the morphology of var. Camemberti remains circular. These data could make it possible to improve the control of fungal development as a function of salt and carbon dioxide partial pressure. These abiotic factors could serve as technological barriers to prevent spoilage and increase the shelf life of cheeses. The present data will allow more precise predictions of fungal proliferation as a function of salt and carbon dioxide partial pressure, which are significant technological hurdles in cheese production.


Assuntos
Queijo , Penicillium , Cloreto de Sódio/farmacologia , Esporos Fúngicos , Dióxido de Carbono , Queijo/microbiologia
2.
Food Res Int ; 157: 111247, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761558

RESUMO

Filamentous fungi are used in the dairy industry as adjunct cultures in fermented products, but can also lead to food spoilage, waste and economic losses. The control of filamentous fungi with abiotic factors contributes to longer food shelf life and prevention of fungal spoilage. One of the main abiotic factors for controlling fungal growth in foods is water activity (aw). This study aimed to evaluate radial growth as a function of aw for sixteen fungal adjuncts and/or spoilers isolated from dairy products or a dairy environment. Glycerol (a non-ionic compound) and sodium chloride (NaCl, an ionic compound) were used to adjust the aw of culture media. This study showed significant diversity in the responses of the tested fungal strains as a function of medium aw. The growth response of Penicillium bialowiezense and Sporendonema casei was binary, with no clear decrease of growth rate until the growth limit, when the aw was reduced. For the strains of Bisifusarium domesticum, Mucor circinelloides and Penicillium camemberti, a decrease of aw had the same impact on radial growth rate regardless of the aw belonging to their growth range. For the strains of Aspergillus flavus, Cladosporium herbarum, Geotrichum candidum, Mucor lanceolatus, Penicillium expansum, Penicillium fuscoglaucum, Penicillium nalgiovense, Paecilomyces niveus, Penicillium roqueforti, Penicillium solitum and Scopulariopsis asperula, the impact of a decrease in aw was more pronounced at high aw than at low aw. A mathematical model was suggested to describe this impact on the radial growth rate. For all tested species, radial growth was more sensitive to NaCl than glycerol. The ionic strength of NaCl mainly explains the difference in the effects of the two solutes.


Assuntos
Cloreto de Sódio , Água , Laticínios/microbiologia , Glicerol , Cloreto de Sódio/farmacologia
3.
Int J Food Microbiol ; 366: 109560, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134635

RESUMO

This study aimed at quantifying the impact of the concentration of four commercial sanitizers and temperature on mold spores inactivation. The sanitizers were based on the following fungicide molecules, ethanol (ARVO 21 SR), active chlorine (ARVO CLM 600), hydrogen peroxide (Nocolyse Food) and triamine (P3 Topax 960). Food plant spores were produced under a moderate water stress, 0.95 aw and dry-harvested to simulate airborne spores responsible for contamination in the food industry. First, Aspergillus flavus, Cladosporium cladosporioides, Mucor circinelloides, and two Penicillium commune isolates were tested against the sanitizers at 20 °C and at a concentration recommended by the manufacturers. Overall, A. flavus was the less resistant species. Second the effects of concentration and temperature were assessed on the most resistant species, i.e., P. commune UBOCC-A-116003 (ARVO 21 SR and P3 Topax 960), P. commune UBOCC-A-112059 (ARVO CLM 600), and M. circinelloides (Nocolyse Food). With the exception of ARVO 21 SR, the observed inactivation kinetics were downward concave. The time necessary to obtain 4 log reduction, t4D, was estimated by means of the Weibull model. At 20 °C and at the recommended concentration by the manufacturers, t4D (min) for the most resistant strains were equal to 2.14 (ARVO 21 SR), 7.35 (ARVO CLM 600), 39.3 (Nocolyse Food) and 82.8 (P3 Topax 960). T4D was increased at lower concentrations and temperatures. These effects were more pronounced for ARVO 21 SR, t4D were about 10 fold and 20 fold the above reported value, 2.14 min, at 8 °C and by diluting the sanitizer by a 10:8 factor, respectively. The least effect of temperature, 3 fold, was shown for ARVO CLM 600, while concentration of P3 Topax 960 had no significant effect on t4D within the recommended utilization range.


Assuntos
Cloro , Peróxido de Hidrogênio , Cloro/farmacologia , Peróxido de Hidrogênio/farmacologia , Cinética , Esporos Fúngicos , Temperatura
4.
Food Res Int ; 148: 110610, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507754

RESUMO

Different strains of a given fungal species may display heterogeneous growth behavior in response to environmental factors. In predictive mycology, the consideration of such variability during data collection could improve the robustness of predictive models. Among food-borne fungi, Penicillium roqueforti is a major food spoiler species which is also used as a ripening culture for blue cheese manufacturing. In the present study, we investigated the intraspecific variability of cardinal temperatures and water activities (aw), namely, minimal (Tmin and awmin), optimal (Topt and awopt) and maximal (Tmax) temperatures and/or aw estimated with the cardinal model for radial growth, of 29 Penicillium roqueforti strains belonging to 3 genetically distinct populations. The mean values of cardinal temperatures and aw for radial growth varied significantly across the tested strains, except for Tmax which was constant. In addition, the relationship between the intraspecific variability of the biological response to temperature and aw and putative genetic populations (based on microsatellite markers) within the selected P. roqueforti strains was investigated. Even though no clear relationship was identified between growth parameters and ecological characteristics, PCA confirmed that certain strains had marginal growth response to temperature or aw. Overall, the present data support the idea that a better knowledge of the response to abiotic factors such as temperature and aw at an intraspecific level would be useful to model fungal growth in predictive mycology approaches.


Assuntos
Penicillium , Microbiologia de Alimentos , Penicillium/genética , Temperatura , Água
5.
Food Microbiol ; 100: 103850, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416954

RESUMO

This study aimed at assessing the impact of the physiological state of fungal spores on inactivation by sodium hypochlorite, 0.1% and 0.2% active chlorine, and 3% hydrogen peroxide. In this context, two physiological states were compared for 4 fungal species (5 strains). The first physiological state corresponded to fungal spores produced at 0.99 aw and harvested using an aqueous solution (laboratory conditions), while the second one corresponded to fungal spores produced under a moderate water stress (0.95 aw) and dry-harvested (mechanical harvesting without use of any water, mimicking food plant conditions). Aspergillus flavus "food plant" conidia were more resistant to all tested fungicide molecules than the "laboratory" ones. The same phenomenon was observed for Penicillium commune UBOCC-A-116003 conidia treated with hydrogen peroxide. However, this isolate did not exhibit any inactivation difference between "laboratory" and "food plant" conidia treated with sodium hypochlorite. Similarly, the physiological state of Cladosporium cladosporioides conidia did not impact the efficacy of the tested biocides. P. commune UBOCC-A-112059 "food plant" and "laboratory" conidia were more resistant to hydrogen peroxide and sodium hypochlorite, respectively. As for Mucor circinelloides, "laboratory" spores were more resistant to all disinfectant than the "food plant" ones. Noteworthy, regardless of the physiological state, all M. circinelloides and C. cladosporioides conidia were inactivated for 5 min treatment at 0.2% active chlorine and for 2.5 min treatment at 0.1% active chlorine, while the conidia of all the other species remained viable for these treatments. The obtained data indicate that the efficacy of disinfectant molecules depends not only on the encountered fungal species and its intraspecific diversity but also on the spore physiological state.


Assuntos
Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Fungos/crescimento & desenvolvimento , Peróxido de Hidrogênio/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Fungos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
6.
Int J Food Microbiol ; 332: 108782, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32650061

RESUMO

The aim of this study was to assess the impact of the physiological state and intraspecific variability on the efficacy of 70% ethanol to inactivate conidia of Penicillium commune, used as a representative species of dairy product contaminants. Four physiological states were obtained by modifying the water activity during the production of conidia (0.995 and 0.950) and the harvesting conditions (hydrated and non-hydrated). These conditions were applied to four different P. commune strains isolated from contaminated dairy products. Five minutes exposure to 70% ethanol at ambient temperature allowed total inactivation of conidia (>4 log10) regardless of the physiological state or the strain. For 1 min exposure, regardless of the strains, only dry-harvested conidia produced at aw 0.950 exhibited survivors. Survival after 2 min exposure was observed for this physiological state for P. commune UBOCC-A-116003 only. For this strain, the impact of the physiological state was greater than 1.54 log10 between dry-harvested conidia produced at aw 0.950 that exhibited survivors after 1 min treatment and the 3 other kinds of conidia that were all inactivated. For 1 min exposure, by comparing the more resistant strain to the three other strains, the impact of the intraspecific variability was 2.35 log10. These results demonstrated that the physiological state of the conidia, the representativeness of the tested species and strains should be taken into account to assess the efficacy of disinfectants in dairies.


Assuntos
Desinfetantes/farmacologia , Etanol/farmacologia , Penicillium/efeitos dos fármacos , Laticínios/microbiologia , Microbiologia de Alimentos , Viabilidade Microbiana/efeitos dos fármacos , Penicillium/fisiologia , Especificidade da Espécie , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Água/farmacologia
7.
Plant Dis ; 104(3): 938-950, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935344

RESUMO

Although lupin anthracnose caused by Colletotrichum lupini is a significant threat for spring and winter lupin crops, it has been poorly studied so far. This study aimed at characterizing the (i) phylogenetic, (ii) morphological, and (iii) physiological diversity of collected isolates from anthracnose-affected lupins. The genetic identification of representative isolates (n = 71) revealed that they were all C. lupini species, further confirming that lupin anthracnose is caused by this species. However, multilocus sequencing on these isolates and 16 additional reference strains of C. lupini revealed a separation into two distinct genetic groups, both of them characterized by a very low genetic diversity. The diversity of morphological characteristics of a selected subset of C. lupini isolates was further evaluated. To the best of our knowledge, microsclerotia production observed for some isolates has never been reported so far within the Colletotrichum acutatum species complex. Finally, the modeling of growth responses of a subset of C. lupini strains revealed the capacity of some strains to grow in vitro at 5°C. This ability was also evidenced in planta, because C. lupini DNA was detectable in plants from 14 days postinoculation at 5°C onward, whereas symptoms began to appear a week later, although at a very low level. Since lupin crops are planted during winter or early spring, growth studies in vitro and in planta demonstrated the capability of the species to grow at temperatures ranging from 5 to 30°C, with an optimum close to 25°C. In this study, C. lupini-specific primers were also designed for real-time quantitative PCR on fungal DNA and allowed the detection of C. lupini in asymptomatic field samples. These results open perspectives to detect earlier and limit the development of this pathogen in lupin crops.


Assuntos
Colletotrichum , Filogenia , Doenças das Plantas , Temperatura , Virulência
8.
Front Microbiol ; 8: 2109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163403

RESUMO

Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax ). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax , depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products.

9.
Food Microbiol ; 68: 7-15, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800827

RESUMO

Water activity (aw) is one of the most influential abiotic factors affecting fungal development in foods. The effects of aw reduction on conidial germination and radial growth are generally studied by supplementing culture medium with the non-ionic solute glycerol despite food aw can also depend on the concentration of ionic solutes such as sodium chloride (NaCl). The present study aimed at modelling and comparing the effects of aw, either modified using NaCl or glycerol, on radial growth and/or conidial germination parameters for five fungal species occurring in the dairy environment. The estimated cardinal values were then used for growth prediction and compared to growth kinetics observed on commercial fresh cheese. Overall, as compared to glycerol, NaCl significantly increased the fungistatic effect resulting from aw reduction by extending latency and/or reducing radial growth rates of Paecilomyces niveus, Penicillium brevicompactum, Penicillium expansum and Penicillium roqueforti but not of Mucor lanceolatus. Besides, NaCl significantly reduced aw range for conidial germination and delayed median germination time of P. expansum but not of P. roqueforti. Despite these observations, cardinal aw values obtained on glycerol-medium yielded similar predictions of radial growth and germination time in commercial fresh cheese as those obtained with NaCl. Thus, it indicates that, for the studied species and aw range used for model validation, the use of NaCl instead of glycerol as a aw depressor had only limited impact for fungal behavior prediction.


Assuntos
Laticínios/microbiologia , Fungos/metabolismo , Glicerol/metabolismo , Cloreto de Sódio/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Água/metabolismo , Meios de Cultura/análise , Meios de Cultura/metabolismo , Fungos/crescimento & desenvolvimento , Modelos Biológicos , Cloreto de Sódio/análise , Esporos Fúngicos/metabolismo , Água/análise
10.
Int J Food Microbiol ; 241: 151-160, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27780083

RESUMO

Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (aw) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced aw (0.900 aw) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 aw germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 aw. Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods.


Assuntos
Germinação/fisiologia , Micélio/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Temperatura Baixa , Meio Ambiente , Contaminação de Alimentos/análise , Glucose/análise , Manitol/análise , Microscopia Eletrônica de Transmissão , Trealose/análise , Água
11.
Food Microbiol ; 56: 69-79, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26919819

RESUMO

The Mucor genus includes a large number of ubiquitous fungal species. In the dairy environment, some of them play a technological role providing typical organoleptic qualities to some cheeses while others can cause spoilage. In this study, we compared the effect of relevant abiotic factors for cheese production on the growth of six strains representative of dairy technological and contaminant species as well as of a non cheese related strain (plant endophyte). Growth kinetics were determined for each strain in function of temperature, water activity and pH on synthetic Potato Dextrose Agar (PDA), and secondary models were fitted to calculate the corresponding specific cardinal values. Using these values and growth kinetics acquired at 15 °C on cheese agar medium (CA) along with three different cheese types, optimal growth rates (µopt) were estimated and consequently used to establish a predictive model. Contrarily to contaminant strains, technological strains showed higher µopt on cheese matrices than on PDA. Interestingly, lag times of the endophyte strain were strongly extended on cheese related matrices. This study offers a relevant predictive model of growth that may be used for better cheese production control but also raises the question of adaptation of some Mucor strains to the cheese.


Assuntos
Queijo/microbiologia , Meios de Cultura/química , Mucor/crescimento & desenvolvimento , Adaptação Fisiológica , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mucor/classificação , Mucor/metabolismo , Temperatura , Água/metabolismo
12.
Int J Food Microbiol ; 215: 187-93, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26320771

RESUMO

Penicillium roqueforti has the ability to produce secondary metabolites, including roquefortine C (ROQC) and mycophenolic acid (MPA). In a previous study, the presence of these mycotoxins, alone or in co-occurrence, has been reported in blue-veined cheese. A high variability of mycotoxin content has also been observed, although the majority of samples exhibited relatively low concentrations. The observed variability raises the question of the factors impacting ROQC and MPA production. In this context, the mycotoxigenic potential of 96 P. roqueforti strains (biotic factor) and the effect of some abiotic factors (pH, temperature, NaCl and O2 contents, and C/N ratio) on mycotoxin production were evaluated. A high intraspecific diversity, established via genotypic (RAPD) and phenotypic (FTIR) approaches, was observed. It was associated with mycotoxigenic potential variability and may thus explain part of the observed variability in mycotoxin content of blue-veined cheese. Moreover, a significant decrease of ROQC and MPA production was observed for conditions (temperature, C/N ratio, O2 and NaCl concentrations) encountered during cheese-making compared with optimal growth conditions. The results also highlighted that there was no significant effect of addition of ROQC amino-acid precursor on the production of both mycotoxins whereas a pH increase from 4.5 to 6.5 slightly reduced MPA but not ROQC production.


Assuntos
Queijo/microbiologia , Indóis/metabolismo , Ácido Micofenólico/biossíntese , Micotoxinas/biossíntese , Penicillium/metabolismo , Queijo/análise , Microbiologia de Alimentos , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Micotoxinas/análise , Piperazinas/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA