Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446003

RESUMO

A cell for synchrotron-based grazing-incidence x-ray diffraction at ambient pressures and moderate temperatures in a controlled gas atmosphere is presented. The cell is suited for the in situ study of thin film samples under catalytically relevant conditions. To some extent, in addition to diffraction, the cell can be simultaneously applied for x-ray reflectometry and fluorescence studies. Different domes enclosing the sample have been studied and selected to ensure minimum contribution to the diffraction patterns. The applicability of the cell is demonstrated using synchrotron radiation by monitoring structural changes of a 3 nm Pd thin film upon interaction with gas-phase hydrogen and during acetylene semihydrogenation at 150 °C. The cell allows investigation of very thin films under catalytically relevant conditions.

2.
Nat Commun ; 14(1): 4869, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573324

RESUMO

While perovskite solar cells have reached competitive efficiency values during the last decade, stability issues remain a critical challenge to be addressed for pushing this technology towards commercialisation. In this study, we analyse a large homogeneous dataset of Maximum Power Point Tracking (MPPT) operational ageing data that we collected with a custom-built High-throughput Ageing System in the past 3 years. In total, 2,245 MPPT ageing curves are analysed which were obtained under controlled conditions (continuous illumination, controlled temperature and atmosphere) from devices comprising various lead-halide perovskite absorbers, charge selective layers, contact layers, and architectures. In a high-level statistical analysis, we find a correlation between the maximum reached power conversion efficiency (PCE) and the relative PCE loss observed after 150-hours of ageing, with more efficient cells statistically also showing higher stability. Additionally, using the unsupervised machine learning method self-organising map, we cluster this dataset based on the degradation curve shapes. We find a correlation between the frequency of particular shapes of degradation curves and the maximum reached PCE.

3.
Science ; 381(6653): 63-69, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410849

RESUMO

Improved stability and efficiency of two-terminal monolithic perovskite-silicon tandem solar cells will require reductions in recombination losses. By combining a triple-halide perovskite (1.68 electron volt bandgap) with a piperazinium iodide interfacial modification, we improved the band alignment, reduced nonradiative recombination losses, and enhanced charge extraction at the electron-selective contact. Solar cells showed open-circuit voltages of up to 1.28 volts in p-i-n single junctions and 2.00 volts in perovskite-silicon tandem solar cells. The tandem cells achieve certified power conversion efficiencies of up to 32.5%.

4.
Data Brief ; 48: 109273, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383781

RESUMO

This article provides datasets containing three years worth of solar spectra for the optimum installation angle of 35° and the building-integrated-photovoltaics relevant vertical angle of 90°. These datasets were obtained by measuring the spectrally resolved solar spectra using a five minute interval, where two sets of spectrometers, which measure different ranges of the solar spectrum, were employed. In addition, a merged dataset of these two spectral measurements, related to every specific five minute interval measurement, is provided. An analysis and interpretation of the data using only year the 2020 is provided in "Measurement and analysis of annual solar spectra at different installation angles in central Europe" [1].

6.
Angew Chem Int Ed Engl ; 62(32): e202218850, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637348

RESUMO

Hydrogen (H2 ) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon-neutral standards. The share of green H2 is still too low to meet the net-zero target, while the demand for high-quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high-quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon-neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.

7.
Nat Nanotechnol ; 17(11): 1214-1221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36280763

RESUMO

Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%.

8.
ACS Appl Mater Interfaces ; 14(4): 5159-5167, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108814

RESUMO

Perovskite solar cells (PSCs) have shown great potential for next-generation photovoltaics. One of the main barriers to their commercial use is their poor long-term stability under ambient conditions and, in particular, their sensitivity to moisture and oxygen. Therefore, several encapsulation strategies are being developed in an attempt to improve the stability of PSCs in a humid environment. The lack of common testing procedures makes the comparison of encapsulation strategies challenging. In this paper, we optimized and investigated two common encapsulation strategies: lamination-based glass-glass encapsulation for outdoor operation and commercial use (COM) and a simple glue-based encapsulation mostly utilized for laboratory research purposes (LAB). We compare both approaches and evaluate their effectiveness to impede humidity ingress under three different testing conditions: on-shelf storage at 21 °C and 30% relative humidity (RH) (ISOS-D1), damp heat exposure at 85 °C and 85% RH (ISOS-D3), and outdoor operational stability continuously monitoring device performance for 10 months under maximum power point tracking on a roof-top test site in Berlin, Germany (ISOS-O3). LAB encapsulation of perovskite devices consists of glue and a cover glass and can be performed at ambient temperature, in an inert environment without the need for complex equipment. This glue-based encapsulation procedure allowed PSCs to retain more than 93% of their conversion efficiency after 1566 h of storage in ambient atmosphere and, therefore, is sufficient and suitable as an interim encapsulation for cell transport or short-term experiments outside an inert atmosphere. However, this simple encapsulation does not pass the IEC 61215 damp heat test and hence results in a high probability of fast degradation of the cells under outdoor conditions. The COM encapsulation procedure requires the use of a vacuum laminator and the cells to be able to withstand a short period of air exposure and at least 20 min at elevated temperatures (in our case, 150 °C). This encapsulation method enabled the cells to pass the IEC 61215 damp heat test and even to retain over 95% of their initial efficiency after 1566 h in a damp heat chamber. Above all, passing the damp heat test for COM-encapsulated devices translates to devices fully retaining their initial efficiency for the full duration of the outdoor test (>10 months). To the best of the authors' knowledge, this is one of the longest outdoor stability demonstrations for PSCs published to date. We stress that both encapsulation approaches described in this work are useful for the scientific community as they fulfill different purposes: the COM for the realization of prototypes for long-term real-condition validation and, ultimately, commercialization of perovskite solar cells and the LAB procedure to enable testing and carrying out experiments on perovskite solar cells under noninert conditions.

9.
Micromachines (Basel) ; 12(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924368

RESUMO

Long-term stability is one of the major challenges for p-i-n type perovskite solar modules (PSMs). Here, we demonstrate the fabrication of fully laser-patterned series interconnected p-i-n perovskite mini-modules, in which either single Cu or Ag layers are compared with Cu/Au metal-bilayer top electrodes. According to the scanning electron microscopy measurements, we found that Cu or Ag top electrodes often exhibit flaking of the metal upon P3 (top contact removal) laser patterning. For Cu/Au bilayer top electrodes, metal flaking may cause intermittent short-circuits between interconnected sub-cells during operation, resulting in fluctuations in the maximum power point (MPP). Here, we demonstrate Cu/Au metal-bilayer-based PSMs with an efficiency of 18.9% on an active area of 2.2 cm2 under continuous 1-sun illumination. This work highlights the importance of optimizing the top-contact composition to tackle the operational stability of mini-modules, and could help to improve the feasibility of large-area module deployment for the commercialization of perovskite photovoltaics.

10.
ACS Appl Mater Interfaces ; 13(11): 13022-13033, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33721995

RESUMO

Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.

11.
ACS Appl Mater Interfaces ; 13(6): 7745-7755, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33529003

RESUMO

Ambient-pressure Kelvin probe and photoelectron yield spectroscopy methods were employed to investigate the impact of the KF and RbF postdeposition treatments (KF-PDT, RbF-PDT) on the electronic features of Cu(In,Ga)Se2 (CIGSe) thin films and the CdS/CIGSe interface in a CdS thickness series that has been sequentially prepared during the chemical bath deposition (CBD) process depending on the deposition time. We observe distinct features correlated to the CBD-CdS growth stages. In particular, we find that after an initial CBD etching stage, the valence band maximum (VBM) of the CIGSe surface is significantly shifted (by 180-620 mV) toward the Fermi level. However, VBM positions at the surface of the CIGSe are still much below the VBM of the CIGSe bulk. The CIGSe surface band gap is found to depend on the type of postdeposition treatment, showing values between 1.46 and 1.58 eV, characteristic for a copper-poor CIGSe surface composition. At the CdS/CIGSe interface, the lowest VBM discontinuity is observed for the RbF-PDT sample. At this interface, a thin layer with a graded band gap is found. We also find that K and Rb act as compensating acceptors in the CdS layer. Detailed energy band diagrams of the CdS/CIGSe heterostructures are proposed.

12.
Science ; 370(6522): 1300-1309, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303611

RESUMO

Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.

14.
Opt Express ; 26(10): A487-A497, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801255

RESUMO

We performed optical simulations using hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) as n-doped interlayer in monolithic perovskite/c-Si heterojunction tandem solar cells. Depending on the adjustable value of its refractive index (2.0 - 2.7) and thickness, nc-SiOx:H allows to optically manage the infrared light absorption in the c-Si bottom cell minimizing reflection losses. We give guidelines for nc-SiOx:H optimization in tandem devices in combination with a systematic investigation of the effect of the surface morphology (flat or textured) on the photocurrent density. For full-flat and rear textured devices, we found matched photocurrents higher than 19 and 20 mA/cm2, respectively, using a 90 nm nc-SiOx:H interlayer with a refractive index of 2.7.

15.
Sci Rep ; 7(1): 873, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408763

RESUMO

Liquid phase crystallized silicon on glass with a thickness of (10-40) µm has the potential to reduce material costs and the environmental impact of crystalline silicon solar cells. Recently, wafer quality open circuit voltages of over 650 mV and remarkable photocurrent densities of over 30 mA/cm2 have been demonstrated on this material, however, a low fill factor was limiting the performance. In this work we present our latest cell progress on 13 µm thin poly-crystalline silicon fabricated by the liquid phase crystallization directly on glass. The contact system uses passivated back-side silicon hetero-junctions, back-side KOH texture for light-trapping and interdigitated ITO/Ag contacts. The fill factors are up to 74% and efficiencies are 13.2% under AM1.5 g for two different doping densities of 1 · 1017/cm3 and 2 · 1016/cm3. The former is limited by bulk and interface recombination, leading to a reduced saturation current density, the latter by series resistance causing a lower fill factor. Both are additionally limited by electrical shading and losses at grain boundaries and dislocations. A small 1 × 0.1 cm2 test structure circumvents limitations of the contact design reaching an efficiency of 15.9% clearly showing the potential of the technology.

16.
ACS Appl Mater Interfaces ; 7(34): 19282-94, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26281016

RESUMO

In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

17.
Appl Opt ; 54(14): 4366-73, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967490

RESUMO

Light scattering superstrates are important for thin-film a-Si:H solar cells. In this work, aluminum-induced texture (AIT) glass, covered with nonetched Al-doped ZnO (AZO), is investigated as an alternative to the commonly used planar glass with texture-etched AZO superstrate. Four different AIT glasses with different surface roughnesses and different lateral feature sizes are investigated for their effects on light trapping in a-Si:H solar cells. For comparison, two reference superstrates are investigated as well: planar glass covered with nonetched AZO and planar glass covered with texture-etched AZO. Single-junction a-Si:H solar cells are deposited onto each superstrate, and the scattering properties (haze and angular resolved scattering) as well as the solar cell characteristics (current-voltage and external quantum efficiency) are measured and compared. The results indicate that AIT glass superstrates with nonetched AZO provide similar, or even superior, light trapping than the standard reference superstrate, which is demonstrated by a higher short-circuit current Jsc and a higher external quantum efficiency. Using the trapped light fraction δ, a quantity based on the integrated light scattering at the AZO/a-Si:H interface, we show that Jsc linearly increases with δ in the scattering regime of the samples, regardless of the type of superstrate used.

18.
Adv Mater ; 27(7): 1262-7, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25581318

RESUMO

Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...