Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37883275

RESUMO

Situated visualization has become an increasingly popular research area in the visualization community, fueled by advancements in augmented reality (AR) technology and immersive analytics. Visualizing data in spatial proximity to their physical referents affords new design opportunities and considerations not present in traditional visualization, which researchers are now beginning to explore. However, the AR research community has an extensive history of designing graphics that are displayed in highly physical contexts. In this work, we leverage the richness of AR research and apply it to situated visualization. We derive design patterns which summarize common approaches of visualizing data in situ. The design patterns are based on a survey of 293 papers published in the AR and visualization communities, as well as our own expertise. We discuss design dimensions that help to describe both our patterns and previous work in the literature. This discussion is accompanied by several guidelines which explain how to apply the patterns given the constraints imposed by the real world. We conclude by discussing future research directions that will help establish a complete understanding of the design of situated visualization, including the role of interactivity, tasks, and workflows.

2.
IEEE Trans Vis Comput Graph ; 29(11): 4676-4685, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37773918

RESUMO

This paper presents guitARhero, an Augmented Reality application for interactively teaching guitar playing to beginners through responsive visualizations overlaid on the guitar neck. We support two types of visual guidance, a highlighting of the frets that need to be pressed and a 3D hand overlay, as well as two display scenarios, one using a desktop magic mirror and one using a video see-through head-mounted display. We conducted a user study with 20 participants to evaluate how well users could follow instructions presented with different guidance and display combinations and compare these to a baseline where users had to follow video instructions. Our study highlights the trade-off between the provided information and visual clarity affecting the user's ability to interpret and follow instructions for fine-grained tasks. We show that the perceived usefulness of instruction integration into an HMD view highly depends on the hardware capabilities and instruction details.

3.
IEEE Trans Vis Comput Graph ; 29(8): 3441-3457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335784

RESUMO

We present ManuKnowVis, the result of a design study, in which we contextualize data from multiple knowledge repositories of a manufacturing process for battery modules used in electric vehicles. In data-driven analyses of manufacturing data, we observed a discrepancy between two stakeholder groups involved in serial manufacturing processes: Knowledge providers (e.g., engineers) have domain knowledge about the manufacturing process but have difficulties in implementing data-driven analyses. Knowledge consumers (e.g., data scientists) have no first-hand domain knowledge but are highly skilled in performing data-driven analyses. ManuKnowVis bridges the gap between providers and consumers and enables the creation and completion of manufacturing knowledge. We contribute a multi-stakeholder design study, where we developed ManuKnowVis in three main iterations with consumers and providers from an automotive company. The iterative development led us to a multiple linked view tool, in which, on the one hand, providers can describe and connect individual entities (e.g., stations or produced parts) of the manufacturing process based on their domain knowledge. On the other hand, consumers can leverage this enhanced data to better understand complex domain problems, thus, performing data analyses more efficiently. As such, our approach directly impacts the success of data-driven analyses from manufacturing data. To demonstrate the usefulness of our approach, we carried out a case study with seven domain experts, which demonstrates how providers can externalize their knowledge and consumers can implement data-driven analyses more efficiently.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37294655

RESUMO

We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.

5.
IEEE Trans Vis Comput Graph ; 29(1): 745-755, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36166539

RESUMO

A plethora of dimensionality reduction techniques have emerged over the past decades, leaving researchers and analysts with a wide variety of choices for reducing their data, all the more so given some techniques come with additional hyper-parametrization (e.g., t-SNE, UMAP, etc.). Recent studies are showing that people often use dimensionality reduction as a black-box regardless of the specific properties the method itself preserves. Hence, evaluating and comparing 2D embeddings is usually qualitatively decided, by setting embeddings side-by-side and letting human judgment decide which embedding is the best. In this work, we propose a quantitative way of evaluating embeddings, that nonetheless places human perception at the center. We run a comparative study, where we ask people to select "good" and "misleading" views between scatterplots of low-dimensional embeddings of image datasets, simulating the way people usually select embeddings. We use the study data as labels for a set of quality metrics for a supervised machine learning model whose purpose is to discover and quantify what exactly people are looking for when deciding between embeddings. With the model as a proxy for human judgments, we use it to rank embeddings on new datasets, explain why they are relevant, and quantify the degree of subjectivity when people select preferred embeddings.

6.
IEEE Trans Vis Comput Graph ; 29(1): 896-906, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36191101

RESUMO

This work investigates and compares the performance of node-link diagrams, adjacency matrices, and bipartite layouts for visualizing networks. In a crowd-sourced user study ( n=150), we measure the task accuracy and completion time of the three representations for different network classes and properties. In contrast to the literature, which covers mostly topology-based tasks (e.g., path finding) in small datasets, we mainly focus on overview tasks for large and directed networks. We consider three overview tasks on networks with 500 nodes: (T1) network class identification, (T2) cluster detection, and (T3) network density estimation, and two detailed tasks: (T4) node in-degree vs. out-degree and (T5) representation mapping, on networks with 50 and 20 nodes, respectively. Our results show that bipartite layouts are beneficial for revealing the overall network structure, while adjacency matrices are most reliable across the different tasks.

7.
IEEE Trans Vis Comput Graph ; 29(7): 3281-3297, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35254986

RESUMO

We present RagRug, an open-source toolkit for situated analytics. The abilities of RagRug go beyond previous immersive analytics toolkits by focusing on specific requirements emerging when using augmented reality (AR) rather than virtual reality. RagRug combines state of the art visual encoding capabilities with a comprehensive physical-virtual model, which lets application developers systematically describe the physical objects in the real world and their role in AR. We connect AR visualizations with data streams from the Internet of Things using distributed dataflow. To this end, we use reactive programming patterns so that visualizations become context-aware, i.e., they adapt to events coming in from the environment. The resulting authoring system is low-code; it emphasises describing the physical and the virtual world and the dataflow between the elements contained therein. We describe the technical design and implementation of RagRug, and report on five example applications illustrating the toolkit's abilities.

8.
IEEE Comput Graph Appl ; 42(2): 10-20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139011

RESUMO

Our built world is one of the most important factors for a livable future, accounting for massive impact on resource and energy use, as well as climate change, but also the social and economic aspects that come with population growth. The architecture, engineering, and construction industry is facing the challenge that it needs to substantially increase its productivity, let alone the quality of buildings of the future. In this article, we discuss these challenges in more detail, focusing on how digitization can facilitate this transformation of the industry, and link them to opportunities for visualization and augmented reality research. We illustrate solution strategies for advanced building systems based on wood and fiber.


Assuntos
Indústria da Construção , Engenharia , Previsões
9.
Artigo em Inglês | MEDLINE | ID: mdl-37015637

RESUMO

We introduce a conceptual model for scalability designed for visualization research. With this model, we systematically analyze over 120 visualization publications from 1990 to 2020 to characterize the different notions of scalability in these works. While many papers have addressed scalability issues, our survey identifies a lack of consistency in the use of the term in the visualization research community. We address this issue by introducing a consistent terminology meant to help visualization researchers better characterize the scalability aspects in their research. It also helps in providing multiple methods for supporting the claim that a work is "scalable." Our model is centered around an effort function with inputs and outputs. The inputs are the problem size and resources, whereas the outputs are the actual efforts, for instance, in terms of computational run time or visual clutter. We select representative examples to illustrate different approaches and facets of what scalability can mean in visualization literature. Finally, targeting the diverse crowd of visualization researchers without a scalability tradition, we provide a set of recommendations for how scalability can be presented in a clear and consistent way to improve fair comparison between visualization techniques and systems and foster reproducibility.

10.
IEEE Trans Vis Comput Graph ; 28(1): 11-21, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587040

RESUMO

In this design study, we present IRVINE, a Visual Analytics (VA) system, which facilitates the analysis of acoustic data to detect and understand previously unknown errors in the manufacturing of electrical engines. In serial manufacturing processes, signatures from acoustic data provide valuable information on how the relationship between multiple produced engines serves to detect and understand previously unknown errors. To analyze such signatures, IRVINE leverages interactive clustering and data labeling techniques, allowing users to analyze clusters of engines with similar signatures, drill down to groups of engines, and select an engine of interest. Furthermore, IRVINE allows to assign labels to engines and clusters and annotate the cause of an error in the acoustic raw measurement of an engine. Since labels and annotations represent valuable knowledge, they are conserved in a knowledge database to be available for other stakeholders. We contribute a design study, where we developed IRVINE in four main iterations with engineers from a company in the automotive sector. To validate IRVINE, we conducted a field study with six domain experts. Our results suggest a high usability and usefulness of IRVINE as part of the improvement of a real-world manufacturing process. Specifically, with IRVINE domain experts were able to label and annotate produced electrical engines more than 30% faster.

11.
IEEE Comput Graph Appl ; 41(4): 125-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264822

RESUMO

In recent years, research on immersive environments has experienced a new wave of interest, and immersive analytics has been established as a new research field. Every year, a vast amount of different techniques, applications, and user studies are published that focus on employing immersive environments for visualizing and analyzing data. Nevertheless, immersive analytics is still a relatively unexplored field that needs more basic research in many aspects and is still viewed with skepticism. Rightly so, because in our opinion, many researchers do not fully exploit the possibilities offered by immersive environments and, on the contrary, sometimes even overestimate the power of immersive visualizations. Although a growing body of papers has demonstrated individual advantages of immersive analytics for specific tasks and problems, the general benefit of using immersive environments for effective analytic tasks remains controversial. In this article, we reflect on when and how immersion may be appropriate for the analysis and present four guiding scenarios. We report on our experiences, discuss the landscape of assessment strategies, and point out the directions where we believe immersive visualizations have the greatest potential.

12.
IEEE Trans Vis Comput Graph ; 27(9): 3826-3833, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33502982

RESUMO

We present the VIS30K dataset, a collection of 29,689 images that represents 30 years of figures and tables from each track of the IEEE Visualization conference series (Vis, SciVis, InfoVis, VAST). VIS30K's comprehensive coverage of the scientific literature in visualization not only reflects the progress of the field but also enables researchers to study the evolution of the state-of-the-art and to find relevant work based on graphical content. We describe the dataset and our semi-automatic collection process, which couples convolutional neural networks (CNN) with curation. Extracting figures and tables semi-automatically allows us to verify that no images are overlooked or extracted erroneously. To improve quality further, we engaged in a peer-search process for high-quality figures from early IEEE Visualization papers. With the resulting data, we also contribute VISImageNavigator (VIN, visimagenavigator.github.io), a web-based tool that facilitates searching and exploring VIS30K by author names, paper keywords, title and abstract, and years.

13.
IEEE Trans Vis Comput Graph ; 27(2): 1634-1643, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048718

RESUMO

In this paper, we propose SineStream, a new variant of streamgraphs that improves their readability by minimizing sine illusion effects. Such effects reflect the tendency of humans to take the orthogonal rather than the vertical distance between two curves as their distance. In SineStream, we connect the readability of streamgraphs with minimizing sine illusions and by doing so provide a perceptual foundation for their design. As the geometry of a streamgraph is controlled by its baseline (the bottom-most curve) and the ordering of the layers, we re-interpret baseline computation and layer ordering algorithms in terms of reducing sine illusion effects. For baseline computation, we improve previous methods by introducing a Gaussian weight to penalize layers with large thickness changes. For layer ordering, three design requirements are proposed and implemented through a hierarchical clustering algorithm. Quantitative experiments and user studies demonstrate that SineStream improves the readability and aesthetics of streamgraphs compared to state-of-the-art methods.

14.
IEEE Trans Vis Comput Graph ; 27(2): 475-484, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048720

RESUMO

We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches. The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.

15.
IEEE Trans Vis Comput Graph ; 27(2): 1204-1213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33055033

RESUMO

Ubiquitous, situated, and physical visualizations create entirely new possibilities for tasks contextualized in the real world, such as doctors inserting needles. During the development of situated visualizations, evaluating visualizations is a core requirement. However, performing such evaluations is intrinsically hard as the real scenarios are safety-critical or expensive to test. To overcome these issues, researchers and practitioners adapt classical approaches from ubiquitous computing and use surrogate empirical methods such as Augmented Reality (AR), Virtual Reality (VR) prototypes, or merely online demonstrations. This approach's primary assumption is that meaningful insights can also be gained from different, usually cheaper and less cumbersome empirical methods. Nevertheless, recent efforts in the Human-Computer Interaction (HCI) community have found evidence against this assumption, which would impede the use of surrogate empirical methods. Currently, these insights rely on a single investigation of four interactive objects. The goal of this work is to investigate if these prior findings also hold for situated visualizations. Therefore, we first created a scenario where situated visualizations support users in do-it-yourself (DIY) tasks such as crafting and assembly. We then set up five empirical study methods to evaluate the four tasks using an online survey, as well as VR, AR, laboratory, and in-situ studies. Using this study design, we conducted a new study with 60 participants. Our results show that the situated visualizations we investigated in this study are not prone to the same dependency on the empirical method, as found in previous work. Our study provides the first evidence that analyzing situated visualizations through different empirical (surrogate) methods might lead to comparable results.

16.
IEEE Comput Graph Appl ; 41(6): 101-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32746086

RESUMO

Simulations of cosmic evolution are a means to explain the formation of the universe as we see it today. The resulting data of such simulations comprise numerous physical quantities, which turns their analysis into a complex task. Here, we analyze such high-dimensional and time-varying particle data using various visualization techniques from the fields of particle visualization, flow visualization, volume visualization, and information visualization. Our approach employs specialized filters to extract and highlight the development of so-called active galactic nuclei and filament structures formed by the particles. Additionally, we calculate X-ray emission of the evolving structures in a preprocessing step to complement visual analysis. Our approach is integrated into a single visual analytics framework to allow for analysis of star formation at interactive frame rates. Finally, we lay out the methodological aspects of our work that led to success at the 2019 IEEE SciVis Contest.

17.
IEEE Trans Vis Comput Graph ; 26(1): 759-769, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31443018

RESUMO

In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30136962

RESUMO

Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30136963

RESUMO

Appropriate choice of colors significantly aids viewers in understanding the structures in multiclass scatterplots and becomes more important with a growing number of data points and groups. An appropriate color mapping is also an important parameter for the creation of an aesthetically pleasing scatterplot. Currently, users of visualization software routinely rely on color mappings that have been pre-defined by the software. A default color mapping, however, cannot ensure an optimal perceptual separability between groups, and sometimes may even lead to a misinterpretation of the data. In this paper, we present an effective approach for color assignment based on a set of given colors that is designed to optimize the perception of scatterplots. Our approach takes into account the spatial relationships, density, degree of overlap between point clusters, and also the background color. For this purpose, we use a genetic algorithm that is able to efficiently find good color assignments. We implemented an interactive color assignment system with three extensions of the basic method that incorporates top K suggestions, user-defined color subsets, and classes of interest for the optimization. To demonstrate the effectiveness of our assignment technique, we conducted a numerical study and a controlled user study to compare our approach with default color assignments; our findings were verified by two expert studies. The results show that our approach is able to support users in distinguishing cluster numbers faster and more precisely than default assignment methods.

20.
IEEE Trans Vis Comput Graph ; 24(1): 298-308, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866560

RESUMO

Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...