Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230323, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583467

RESUMO

Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient. Capitalizing on advances in data availability and impact assessment protocols, we developed environmental impact indicators to track realized and potential impacts of IAS. We also developed an information status indicator to assess the adequacy of the data underlying the impact indicators. We used data on 75 naturalized amphibians from 82 countries to demonstrate the indicators at a global scale. The information status indicator shows variation in the reliability of the data and highlights areas where absence of impact should be interpreted with caution. Impact indicators show that growth in potential impacts are dominated by predatory species, while potential impacts from both predation and disease transmission are distributed worldwide. Using open access data, the indicators are reproducible and adaptable across scales and taxa and can be used to assess global trends and distributions of IAS, assisting authorities in prioritizing control efforts and identifying areas at risk of future invasions. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Espécies Introduzidas , Animais , Reprodutibilidade dos Testes , Anfíbios , Ecossistema
2.
Trends Ecol Evol ; 39(5): 409-412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508924

RESUMO

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies Introduzidas , Conservação dos Recursos Naturais/métodos , Ecossistema , Política Ambiental
3.
Glob Chang Biol ; 29(17): 4924-4938, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37395619

RESUMO

Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Filogenia , Anfíbios , Répteis , Aves
4.
Sci Total Environ ; 884: 163808, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127152

RESUMO

Rates of biological invasion have increased over recent centuries and are expected to increase in the future. Whereas increasing rates of non-native species incursions across realms, taxonomic groups, and regions are well-reported, trends in abundances within these contexts have lacked analysis due to a paucity of long-term data at large spatiotemporal scales. These knowledge gaps impede prioritisation of realms, regions, and taxonomic groups for management. We analysed 180 biological time series (median 15 ± 12.8 sampling years) mainly from Long-Term Ecological Research (LTER) sites comprising abundances of marine, freshwater, and terrestrial non-native species in Europe. A high number (150; 83,3 %) of these time series were invaded by at least one non-native species. We tested whether (i) local long-term abundance trends of non-native species are consistent among environmental realms, taxonomic groups, and regions, and (ii) if any detected trend can be explained by climatic conditions. Our results indicate that abundance trends at local scales are highly variable, with evidence of declines in marine and freshwater long-term monitoring sites, despite non-native species reports increasing rapidly since the late 1970s. These declines were driven mostly by abundance trends in non-native fish, birds, and invertebrate species in three biogeographic regions (Continental, Atlantic, and the North Sea). Temperature and precipitation were important predictors of observed abundance trends across Europe. Yet, the response was larger for species with already declining trends and differed among taxa. Our results indicate that trends in biological invasions, especially across different taxonomic groups, are context-dependent and require robust local data to understand long-term trends across contexts at large scales. While the process of biological invasion is spatiotemporally broad, economic or ecological impacts are generally realised on the local level. Accordingly, we urge proactive and coordinated management actions from local to large scales, as invasion impacts are substantial and dynamics are prone to change.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Temperatura , Água Doce , Europa (Continente) , Biodiversidade
5.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045818

RESUMO

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Assuntos
Formigas , Ecossistema , Animais , Espécies Introduzidas , Incidência , Biodiversidade , Mamíferos
6.
Sustain Sci ; 18(2): 771-789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37012996

RESUMO

The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996-2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01166-3.

7.
Proc Natl Acad Sci U S A ; 120(1): e2201911120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574645

RESUMO

Our ability to predict the spread of alien species is largely based on knowledge of previous invasion dynamics of individual species. However, in view of the large and growing number of alien species, understanding universal spread patterns common among taxa but specific to regions would considerably improve our ability to predict future dynamics of biological invasions. Here, using a comprehensive dataset of years of first record of alien species for four major biological groups (birds, nonmarine fishes, insects, and vascular plants), we applied a network approach to uncover frequent sequential patterns of first recordings of alien species across countries worldwide. Our analysis identified a few countries as consistent early recorders of alien species, with many subsequent records reported from countries in close geographic vicinity. These findings indicate that the spread network of alien species consists of two levels, a backbone of main dispersal hubs, driving intercontinental species movement, and subsequent intracontinental radiative spread in their vicinity. Geographical proximity and climatic similarity were significant predictors of same-species recording among countries. International trade was a significant predictor of the relative timing of species recordings, with countries having higher levels of trade flows consistently recording the species earlier. Targeting the countries that have emerged as hubs for the early spread of alien species may have substantial cascading effects on the global spread network of alien species, significantly reducing biological invasions. Furthermore, using these countries as early-warning system of upcoming invasions may also boost national prevention and invasion preparedness efforts.


Assuntos
Espécies Introduzidas , Traqueófitas , Animais , Comércio , Internacionalidade , Aves
8.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253544

RESUMO

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Assuntos
Colonialismo , Espécies Introduzidas , Plantas
9.
Nat Commun ; 12(1): 7290, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911960

RESUMO

Regional species assemblages have been shaped by colonization, speciation and extinction over millions of years. Humans have altered biogeography by introducing species to new ranges. However, an analysis of how strongly naturalized plant species (i.e. alien plants that have established self-sustaining populations) affect the taxonomic and phylogenetic uniqueness of regional floras globally is still missing. Here, we present such an analysis with data from native and naturalized alien floras in 658 regions around the world. We find strong taxonomic and phylogenetic floristic homogenization overall, and that the natural decline in floristic similarity with increasing geographic distance is weakened by naturalized species. Floristic homogenization increases with climatic similarity, which emphasizes the importance of climate matching in plant naturalization. Moreover, floristic homogenization is greater between regions with current or past administrative relationships, indicating that being part of the same country as well as historical colonial ties facilitate floristic exchange, most likely due to more intensive trade and transport between such regions. Our findings show that naturalization of alien plants threatens taxonomic and phylogenetic uniqueness of regional floras globally. Unless more effective biosecurity measures are implemented, it is likely that with ongoing globalization, even the most distant regions will lose their floristic uniqueness.


Assuntos
Plantas/classificação , Biodiversidade , Clima , Ecossistema , Espécies Introduzidas/estatística & dados numéricos , Filogenia
10.
Biodivers Data J ; 9: e67318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385884

RESUMO

BACKGROUND: The Pacific Region has the highest density of naturalised plant species worldwide, which makes it an important area for research on the ecology, evolution and biogeography of biological invasions. While different data sources on naturalised plant species exist for the Pacific, there is no taxonomically and spatially harmonised database available for different subsets of species and islands. A comprehensive, accessible database containing the distribution of naturalised vascular plant species in the Pacific will enable new basic and applied research for researchers and will be an important information source for practitioners working in the Region. NEW INFORMATION: Here, we present PacIFlora, an updated and taxonomically standardised list of naturalised species, their unified nativeness, cultivation and invasive status and their distribution across the Pacific Ocean, including harmonised location denoination. This list is based on the two largest databases on naturalised plants for the Region, specifically the Pacific Island Ecosystems at Risk (PIER) and the Global Naturalised Alien Flora (GloNAF) databases. We provide an outlook for how this database can contribute to numerous research questions and conservation efforts.

11.
Ecol Appl ; 31(7): e02412, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255404

RESUMO

As part of national biosecurity programs, cargo imports, passenger baggage, and international mail are inspected at ports of entry to verify compliance with phytosanitary regulations and to intercept potentially damaging nonnative species to prevent their introduction. Detection of organisms during inspections may also provide crucial information about the species composition and relative arrival rates in invasion pathways that can inform the implementation of other biosecurity practices such as quarantines and surveillance. In most regions, insects are the main taxonomic group encountered during inspections. We gathered insect interception data from nine world regions collected from 1995 to 2019 to compare the composition of species arriving at ports in these regions. Collectively, 8,716 insect species were intercepted in these regions over the last 25 yr, with the combined international data set comprising 1,899,573 interception events, of which 863,972 were identified to species level. Rarefaction analysis indicated that interceptions comprise only a small fraction of species present in invasion pathways. Despite differences in inspection methodologies, as well as differences in the composition of import source regions and imported commodities, we found strong positive correlations in species interception frequencies between regions, particularly within the Hemiptera and Thysanoptera. There were also significant differences in species frequencies among insects intercepted in different regions. Nevertheless, integrating interception data among multiple regions would be valuable for estimating invasion risks for insect species with high likelihoods of introduction as well as for identifying rare but potentially damaging species.


Assuntos
Insetos , Espécies Introduzidas , Animais , Humanos
12.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050023

RESUMO

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Assuntos
Espécies Introduzidas , Filogeografia , Plantas/classificação , Ecossistema , Europa (Continente)
13.
Glob Chang Biol ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000893

RESUMO

Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.

14.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32663906

RESUMO

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema , Previsões , Humanos
15.
Biol Rev Camb Philos Soc ; 95(6): 1511-1534, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32588508

RESUMO

Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species - the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods - are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Filogenia , Densidade Demográfica , Ratos
16.
AoB Plants ; 11(5): plz051, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636882

RESUMO

Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (~50 % of the explained variation) than RRN (~40 %). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have ~6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 % of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response.

17.
Bioscience ; 69(9): 697-710, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527924

RESUMO

Biological invasions have emerged as an eminent feature of global change, with substantial impacts on the environment and human livelihoods. Current research demonstrates that the numbers and impacts of alien species are rising unabatedly. At the same time, we lack a thorough understanding of potential future trajectories for the decades to come. With the recent establishment of comprehensive global databases, it is, for the first time, feasible to develop and quantify future scenarios of biological invasions. Therefore, we propose a conceptual framework for how to develop alien species scenarios for the twenty-first century and how to identify relevant steps and challenges along the way. The concept will be important to inform research, policy, stakeholders, and the general public. Furthermore, we call for the scientific community to join forces and to operationalize the framework for scenarios and models of biological invasions to develop an important baseline for understanding and managing future biological invasions.

18.
Proc Biol Sci ; 286(1901): 20190036, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31014215

RESUMO

The number of released individuals, which is a component of propagule pressure, is considered to be a major driver for the establishment success of non-native species. However, propagule pressure is often assumed to result from single or few release events, which does not necessarily apply to the frequent releases of invertebrates or other taxa through global transport. For instance, the high intensity of global shipping may result in frequent releases of large numbers of individuals, and the complexity of shipping dynamics impedes predictions of invasion dynamics. Here, we present a mathematical model for the spread of planktonic organisms by global shipping, using the history of movements by 33 566 ships among 1477 ports to simulate population dynamics for the comb jelly Mnemiopsis leidyi as a case study. The degree of propagule pressure at one site resulted from the coincident arrival of individuals from other sites with native or non-native populations. Key to sequential spread in European waters was a readily available source of propagules and a suitable recipient environment. These propagules were derived from previously introduced 'bridgehead' populations supplemented with those from native sources. Invasion success is therefore determined by the complex interaction of global shipping and local population dynamics. The general findings probably hold true for the spread of species in other complex systems, such as insects or plant seeds exchanged via commercial trade or transport.


Assuntos
Ctenóforos/fisiologia , Espécies Introduzidas , Zooplâncton/fisiologia , Animais , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Navios
19.
Curr Biol ; 29(4): R120-R122, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30779898

RESUMO

China's ambitious aspirations to build a modern Silk Road will open new avenues for species to spread into regions outside their native range. A new study identifies 14 hot spots of biological invasions falling along the planned economic corridors.


Assuntos
Ecologia , Espécies Introduzidas , China
20.
Ecology ; 100(1): e02542, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341991

RESUMO

This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2. GloNAF represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions (e.g. countries, states, provinces, districts, islands) around the globe. The dataset includes 13,939 taxa and covers 1,029 regions (including 381 islands). The dataset is based on 210 data sources. For each taxon-by-region combination, we provide information on whether the taxon is considered to be naturalized in the specific region (i.e. has established self-sustaining populations in the wild). Non-native taxa are marked as "alien", when it is not clear whether they are naturalized. To facilitate alignment with other plant databases, we provide for each taxon the name as given in the original data source and the standardized taxon and family names used by The Plant List Version 1.1 (http://www.theplantlist.org/). We provide an ESRI shapefile including polygons for each region and information on whether it is an island or a mainland region, the country and the Taxonomic Databases Working Group (TDWG) regions it is part of (TDWG levels 1-4). We also provide several variables that can be used to filter the data according to quality and completeness of alien taxon lists, which vary among the combinations of regions and data sources. A previous version of the GloNAF dataset (version 1.1) has already been used in several studies on, for example, historical spatial flows of taxa between continents and geographical patterns and determinants of naturalization across different taxonomic groups. We intend the updated and expanded GloNAF version presented here to be a global resource useful for studying plant invasions and changes in biodiversity from regional to global scales. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/public-domain/cc0/). When you use the data in your publication, we request that you cite this data paper. If GloNAF is a major part of the data analyzed in your study, you should consider inviting the GloNAF core team (see Metadata S1: Originators in the Overall project description) as collaborators. If you plan to use the GloNAF dataset, we encourage you to contact the GloNAF core team to check whether there have been recent updates of the dataset, and whether similar analyses are already ongoing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...