Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Microbiol ; 26(2): e16584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372423


Coastal bays, such as Delaware Bay, are highly productive, ecologically important transitions between rivers and the coastal ocean. They offer opportunities to investigate archaeal assemblages across seasons, with the exchange of water masses that occurs with tidal cycles, and in the context of variable organic matter quality. For a year-long estuarine, size-fractionated time series, we used amplicon sequencing, chemical measurements, and qPCR to follow archaeal groups through the seasons. We detected seasonally high abundances of Marine Group II archaea in summer months which correlate with indicators of phytoplankton production, although not phytoplankton biomass. Although previous studies have reported associations between Marine Group II archaea and particles, here they are almost entirely found in very small particles (0.22-0.7 µm), suggesting they are free-living cells. Populations of Nitrososphaeria did not vary with particle size or environmental conditions. Methanogens were significant fractions of archaeal sequences in large particles at low tide during winter months. Contrary to expectations, Nanoarchaeia were found predominantly in the free-living fraction despite the previous observation that they require an association with hosts. These results underscore the utility of time series studies in shallow, tidally mixed estuarine environments that capture variable conditions for understanding the ecology and biogeochemistry of planktic archaea.

Archaea , Ecologia , Archaea/genética , Fatores de Tempo , Fitoplâncton/genética , Rios , Estações do Ano
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366177


Growing evidence suggests that interactions among heterotrophic microorganisms influence the efficiency and rate of organic matter turnover. These interactions are dynamic and shaped by the composition and availability of resources in their surrounding environment. Heterotrophic microorganisms inhabiting marine environments often encounter fluctuations in the quality and quantity of carbon inputs, ranging from simple sugars to large, complex compounds. Here, we experimentally tested how the chemical complexity of carbon substrates affects competition and growth dynamics between two heterotrophic marine isolates. We tracked cell density using species-specific polymerase chain reaction (PCR) assays and measured rates of microbial CO2 production along with associated isotopic signatures (13C and 14C) to quantify the impact of these interactions on organic matter remineralization. The observed cell densities revealed substrate-driven interactions: one species exhibited a competitive advantage and quickly outgrew the other when incubated with a labile compound whereas both species seemed to coexist harmoniously in the presence of more complex organic matter. Rates of CO2 respiration revealed that coincubation of these isolates enhanced organic matter turnover, sometimes by nearly 2-fold, compared to their incubation as mono-cultures. Isotopic signatures of respired CO2 indicated that coincubation resulted in a greater remineralization of macromolecular organic matter. These results demonstrate that simple substrates promote competition whereas high substrate complexity reduces competitiveness and promotes the partitioning of degradative activities into distinct niches, facilitating coordinated utilization of the carbon pool. Taken together, this study yields new insight into how the quality of organic matter plays a pivotal role in determining microbial interactions within marine environments.

Dióxido de Carbono , Carbono , Carbono/química , Processos Heterotróficos
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910898


Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.