Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Mol Biotechnol ; 66(1): 151-160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37060514

RESUMO

SARS-CoV-2 enters cells via binding of the surface-exposed spike protein RBD to host cell ACE2 receptors. Therefore, in this study, we designed a scFv (single-chain fragment variable) based on the amino acid sequence of CC12.1, a neutralizing antibody found in the serum of patients with COVID-19. scFv is a low-molecular-weight antibody designed based on the antibody-antigen recognition site. Compared with the original antibody, scFv has the advantages of high tissue penetration and low production cost. In this study, we constructed gmLAB (genetically modified lactic acid bacteria) by incorporating the designed scFv into a gene expression vector and introducing it into lactic acid bacteria, aiming to develop microbial therapeutics against COVID-19. In addition, gmLAB were also constructed to produce GFP-fused scFv as a means of visualizing scFv. Expression of each scFv was confirmed by Western blotting, and the ability to bind to the RBD was investigated by ELISA. This study is the first to design a scFv against the RBD of SARS-CoV-2 using gmLAB and could be applied in the future.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/genética , Sequência de Aminoácidos , Ligação Proteica , Anticorpos Antivirais
2.
Anim Sci J ; 94(1): e13905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38102883

RESUMO

Brevibacterium linens (B. linens) is a dairy microorganism used in the production of washed cheese. However, there has been little research on B. linens, especially regarding its effects in vivo. Herein, we report the morphological characteristics of B. linens, such as its two-phase growth and V- and Y-shaped bodies. We also report that oral administration of B. linens increased the diversity of the gut microbiota and promoted the growth of lactobacilli and short-chain fatty acid-producing bacteria, such as Lachnospiraceae and Muribaculaceae. These findings suggest that the ingestion of B. linens may have beneficial effects in humans and animals.


Assuntos
Queijo , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Queijo/microbiologia , Lactobacillus , Bactérias , Administração Oral
3.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762684

RESUMO

An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes.

4.
Anim Biosci ; 36(8): 1209-1220, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37170515

RESUMO

OBJECTIVE: The use of probiotics as an alternative to antibiotics in animal feed has received considerable attention in recent decades. Lactic acid bacteria (LAB) have remarkable functional properties promoting host health and are major microorganisms for probiotic purposes. The aim of this study was to characterize LAB strains of the chicken digestive tract and to determine their functional properties for further use as potential probiotics in poultry. METHODS: A total of 2,000 colonies were isolated from the ileum and cecal contents of the chickens based on their phenotypic profiles and followed by a preliminary detection for acid and bile tolerance. The selected 200 LAB isolates with exhibited well-tolerance in acid and bile conditions were then identified by sequencing the 16S rDNA gene, followed by acid and bile tolerance, antimicrobial activity, adhesion to epithelial cells and additional characteristics on the removal of cholesterol. Then, the two probiotic strains (L. ingluviei and L. salivarious) which showed the greatest advantage in vitro testing were selected to assess their efficacy in broiler chickens. RESULTS: It was found that 200 LAB isolates that complied with all measurement criteria belonged to five strains, including L. acidophilus (63 colonies), L. ingluviei (2 colonies), L. reuteri (58 colonies), L. salivarius (72 colonies), and L. saerimneri (5 colonies). We found that the L. ingluviei and L. salivarius can increase the population of LAB and Bifidobacterium spp. while reducing Enterobacteria spp. and Escherichia coli in the cecal content of chickens. Additionally, increased concentrations of valeric acid and short chain fatty acids were also observed. CONCLUSION: This study indicates that all five Lactobacillus strains isolated from gut contents of chickens are safe and possess probiotic properties, especially L. ingluviei and L. salivarius. Future studies should evaluate the potential for growth improvement in broilers.

5.
AMB Express ; 13(1): 4, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635518

RESUMO

Here, we developed a genetically modified lactic acid bacteria (gmLAB) that produces green fluorescent protein (GFP)-conjugating, anti-programmed death-ligand 1 (PD-L1) single-chain variable fragments (scFv) for use as an anti-cancer device that targets immune checkpoint molecules. Since PD-L1 plays a key role as an immune checkpoint molecule in the tumor microenvironment, inhibition and detection of PD-L1 are important in cancer research. The anti-PD-L1 scFv was designed based on atezolizumab, a humanized IgG1 monoclonal antibody, and integrated into a lactococcal GFP gene expression vector. Gene expression from the constructed gmLAB was confirmed by western blotting and GFP fluorescence. The ability of GFP-conjugating anti-PD-L1 scFv against the target antigen, PD-L1 protein, was shown using an enzyme-linked immunosorbent assay. Finally, the ability to recognize PD-L1-expressing tumor-cell lines was confirmed using flow cytometry and fluorescence microscopy. Our results suggest that the gmLAB could be applied to in vivo imaging in cancer as an affordable diagnostic/treatment tool.

6.
Biomedicines ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359210

RESUMO

Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD. RT-PCR and immunostaining revealed that nucleolin was abundantly expressed and localized in nucleoplasm and nucleoli in all ERMS cell lines, similar to myoblasts. Both iSN04 and AS1411 at final concentrations of 10-30 µM significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. In all ERMS cell lines, iSN04 at a final concentration of 10 µM markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. Quantitative RT-PCR or immunostaining of phosphorylated histone H3 and myosin heavy chain demonstrated that iSN04 suppressed the cell cycle and partially promoted myogenesis but did not induce apoptosis in ERMS cells. Finally, both iSN04 and AS1411 at final concentrations of 10-30 µM disrupted the formation and outgrowth of RD tumorspheres in three-dimensional culture mimicking in vivo tumorigenesis. In conclusion, ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411, which modulates several cell cycle-related and myogenic gene expression. The present study provides evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.

7.
Nanomaterials (Basel) ; 12(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630904

RESUMO

Dysfunction of bone-forming cells, osteoblasts, is one of the causes of osteoporosis. Accumulating evidence has indicated that oligodeoxynucleotides (ODNs) designed from genome sequences have the potential to regulate osteogenic cell fate. Such osteogenetic ODNs (osteoDNs) targeting and activating osteoblasts can be the candidates of nucleic acid drugs for osteoporosis. In this study, the ODN library derived from the Lacticaseibacillus rhamnosus GG genome was screened to determine its osteogenetic effect on murine osteoblast cell line MC3T3-E1. An 18-base ODN, iSN40, was identified to enhance alkaline phosphatase activity of osteoblasts within 48 h. iSN40 also induced the expression of osteogenic genes such as Msx2, osterix, collagen type 1α, osteopontin, and osteocalcin. Eventually, iSN40 facilitated calcium deposition on osteoblasts at the late stage of differentiation. Intriguingly, the CpG motif within iSN40 was not required for its osteogenetic activity, indicating that iSN40 functions in a TLR9-independent manner. These data demonstrate that iSN40 serves as a novel osteogenetic ODN (osteoDN) that promotes osteoblast differentiation. iSN40 provides a potential seed of the nucleic acid drug that activating osteoblasts for osteoporosis therapy.

8.
Front Immunol ; 12: 738041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867960

RESUMO

CpG-oligodeoxynucleotides (CpG-ODNs) constitute an attractive alternative for asthma treatment. However, very little evidence is available from studies on the oral administration of CpG-ODNs in animals. Previously, we developed acid-resistant particles (named ODNcap) as an oral delivery device for ODNs. Here, we showed that free feeding of an ODNcap-containing feed prophylactically attenuates allergic airway inflammation, hyperresponsiveness, and goblet cell hyperplasia in an ovalbumin-induced asthma model. Using transcriptomics-driven approaches, we demonstrated that injury of pulmonary vein cardiomyocytes accompanies allergen inhalation challenge, but is inhibited by ODNcap feeding. We also showed the participation of an airway antimicrobial peptide (Reg3γ) and fecal microbiota in the ODNcap-mediated effects. Collectively, our findings suggest that daily oral ingestion of ODNcap may provide preventive effects on allergic bronchopulmonary insults via regulation of mechanisms involved in the gut-lung connection.


Assuntos
Hiper-Reatividade Brônquica/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipersensibilidade/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Pneumonia/imunologia , Administração Oral , Animais , Peptídeos Antimicrobianos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Ovalbumina/toxicidade , Proteínas Associadas a Pancreatite/imunologia
9.
Front Nutr ; 8: 701466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490323

RESUMO

The maintenance of intestinal homeostasis is necessary for a good quality of life, and strengthening of the intestinal barrier function is thus an important issue. Therefore, we focused on soybean resistant protein (SRP) derived from kori-tofu (freeze-dried tofu), which is a traditional Japanese food, as a functional food component. In this study, to investigate the effect of SRP on the intestinal barrier function and intestinal microbiota, we conducted an SRP free intake experiment in mice. Results showed that ingestion of SRP decreased the serum level of lipopolysaccharide-binding protein and induced the expression of Reg3γ, thereby improving the intestinal barrier function. In addition, SRP intake induced changes in the cecal microbiota, as observed by changes in ß-diversity. In particular, in the microbiota, the up-regulation of functional gene pathways related to the bacterial invasion of epithelial cells (ko05100) was observed, suggesting that Reg3γ expression was induced by the direct stimulation of epithelial cells. The results of this study suggest that SRP is a functional food component that may contribute to the maintenance of intestinal homeostasis.

10.
Anim Sci J ; 92(1): e13597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34309956

RESUMO

Myoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts. An isoquinoline alkaloid, berberine, forms a complex with one of the myoDNs, iSN04, and enhances its activities. This study investigated the effects of myoDNs on chicken myoblasts to elucidate their species-specific actions. Seven myoDNs (iSN01-iSN07) were found to facilitate the differentiation of chicken myoblasts into myosin heavy chain (MHC)-positive myotubes. The iSN04-berberine complex exhibited a higher myogenetic activity than iSN04 alone, which was shown to enhance the differentiation of myoblasts into myotubes and the upregulation of myogenic gene expression (MyoD, myogenin, MHC, and myomaker). These data indicate that myoDNs promoting chicken myoblast differentiation may be used as potential feed additives in broiler diets.


Assuntos
Berberina , Galinhas , Animais , Berberina/farmacologia , Diferenciação Celular , Galinhas/genética , Desenvolvimento Muscular , Proteína MyoD/genética , Mioblastos , Miogenina/genética , Cadeias Pesadas de Miosina/genética , Oligodesoxirribonucleotídeos
11.
Front Physiol ; 12: 679152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108889

RESUMO

Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat muscle wasting in patients with DM.

12.
Anim Sci J ; 91(1): e13468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33025687

RESUMO

Here, we investigated the effect of prophylactic oral treatment with carbonate apatite-based particles (ID35caps) containing Lactobacillus rhamnosus GG-derived immunostimulatory oligodeoxynucleotides (ID35) when used in mice with acute colitis. Mice were administered orally with control particles (carbonate apatite particles, Caps), ID35, or ID35caps for 2 days, and then were given free access to drinking water containing 3% (w/v) dextran sodium sulfate (DSS) for 5 days (Days 0-5) to induce acute colitis. Body weight change, fecal bleeding, and stool consistency were monitored and scored as a disease activity index (DAI) to assess symptoms of colitis. On Day 10, animals were euthanized and the colon length was measured to evaluate inflammatory tissue injury. Prophylactic oral treatment with ID35caps significantly suppressed DSS-induced elevation of the DAI score and shortening of the colon compared to the respective parameters in DSS-exposed mice treated with Cap or ID35. We conclude that oral priming with ID35caps attenuates symptoms and inflammatory colonic injury in a mouse model of DSS-induced acute colitis. This finding suggests that ID35caps may be a new oral agent for preventing intestinal inflammation.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Lacticaseibacillus rhamnosus/química , Oligodesoxirribonucleotídeos/administração & dosagem , Doença Aguda , Adjuvantes Imunológicos/isolamento & purificação , Administração Oral , Animais , Colite/induzido quimicamente , Colite/prevenção & controle , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/isolamento & purificação
13.
Antioxidants (Basel) ; 9(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121064

RESUMO

Emphysema, a type of lung-destroying condition associated with chronic obstructive pulmonary disease (COPD), is an inflammatory lung disease mainly due to cigarette smoke exposure. As there is no curative therapy, prevention should be considered first by cessation of smoking to avoid exposure to oxidative stresses and inflammatory mediators. In addition, therapies involving antioxidative and/or anti-inflammatory agents such as heme oxygenase (HO)-1 are candidate treatments. We developed a new tool using genetically modified Lactococcus lactis to deliver recombinant HO-1 to the lungs. Using an elastase-induced emphysema model mimicking COPD, we evaluated the effect of nasally administered L. lactis secreting HO-1 (HO-1 lactis) on cellular and molecular responses in the lungs and further disease progression. Nasally administered HO-1 lactis resulted in (1) overexpression of HO-1 in the lungs and serum and (2) attenuation of emphysema progression evaluated both physiologically and morphologically. There was a transient 5-10% weight loss compared to baseline through trafficking to the lungs when administering 1.0 × 109 cells/mouse; however, this did not impact either survival or final body weight. These results suggest that delivering HO-1 using genetically modified L. lactis through the airways could be a safe and potentially effective therapeutic approach for COPD.

15.
Mol Biotechnol ; 62(11-12): 572-579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32960405

RESUMO

Lactic acid bacteria are human commensal organisms that have immunomodulatory and metabolism-promoting effects. In addition, due to the increasing demand for biopharmaceuticals, genetically modified lactic acid bacteria (gmLAB) that produce recombinant proteins are expected to be used as microbial therapeutics and next-generation probiotics. In this study, we constructed a gmLAB strain that produces anti-human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) single-chain fragment variable (CTLA4scFv) for possible use in a cancer treatment strategy using gmLAB. CTLA-4, an immune checkpoint molecule, suppresses the anti-cancer immune response; thus, inhibition of CTLA-4 signaling is important in cancer therapy. In this study, we designed a CTLA4scFv composed of a heavy and light chain of the variable region from anti-human CTLA-4 antibody connected by a flexible peptide linker. CTLA4scFv was expressed using nisin controlled gene expression (NICE) system, a lactococcal inducible gene expression system, and the DNA sequence encoding CTLA4scFv was inserted downstream of the PnisA promoter of the gene expression vector pNZ8148#2. Furthermore, expression of recombinant CTLA4scFv was confirmed by Western blotting, and the immunoreactivity of recombinant CTLA4scFv against human CTLA-4 protein was examined using ELISA. We speculate that gmLAB producing bioactive CTLA4scFv will become an attractive approach for cancer treatment.


Assuntos
Antineoplásicos Imunológicos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Lactococcus lactis/crescimento & desenvolvimento , Anticorpos de Cadeia Única/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Lactococcus lactis/genética , Nisina/farmacologia , Regiões Promotoras Genéticas , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/genética
16.
Exp Mol Med ; 52(9): 1627-1636, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32989233

RESUMO

The increased incidence of inflammatory bowel disease (IBD) in Western and rapidly Westernizing developing countries poses a global pandemic threat. The development of affordable drugs for treating IBD worldwide is thus a priority. Genetically modified lactic acid bacteria (gmLAB) as microbial therapeutics are inexpensive protein producers suitable for use as carriers of protein to the intestinal mucosa. Here, we successfully constructed gmLAB hypersecreting interleukin 1 receptor antagonist (IL-1Ra). Oral administration of these gmLAB suppressed body weight reduction and exacerbation of the disease activity index score in mice with acute colitis and decreased the number of CD4+ IL-17A+ cells in the mesenteric lymph nodes. These data suggest that the gmLAB deliver IL-1Ra to the colon, where it inhibits IL-1 signaling. We thus developed a novel IBD therapeutic that blocks IL-1 signaling using a gmLAB protein delivery system. This system could be an inexpensive oral microbial therapeutic.


Assuntos
Colite/terapia , Proteína Antagonista do Receptor de Interleucina 1/biossíntese , Proteína Antagonista do Receptor de Interleucina 1/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Animais , Colite/etiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Expressão Gênica , Engenharia Genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/terapia , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/isolamento & purificação , Resultado do Tratamento
17.
Mol Biol Rep ; 47(9): 7039-7047, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32880064

RESUMO

Interleukin 4 (IL-4) is a cytokine that induces T-cell differentiation and the production of antibodies from B cells, and plays a crucial role in the allergic response. Therefore, development of a therapeutic approach against IL-4 signaling is expected to prevent or control Th2-related allergic diseases. IL-4 single-chain fragment variable (scFv), which is a recombinant protein consisting of the Fv region of an IL-4 antibody connected to a flexible peptide linker, is expected to be an inhibitor of IL-4 signaling. In this study, recombinant IL-4 scFv was produced by genetically modified lactic acid bacteria (gmLAB); this system is gaining attention as a type of microbial therapeutics. Recombinant gene expression was confirmed with western blotting, and the IL-4 recognition ability of IL-4 scFv produced by gmLAB was examined with an enzyme-linked immunosorbent assay. The macrophage cell line, Raw264.7, and peritoneal macrophages isolated from C57BL/6 mice were employed for an in vitro IL-4 signaling inhibition assay. IL-4 stimulation increased the mRNA expression of arginase-1, a biomarker of IL-4 signaling in macrophages, but arginase-1 expression was suppressed by IL-4 scFv produced by gmLAB, indicating that IL-4 scFv has IL-4 signaling inhibitory activity. gmLAB that produces bioactive IL-4 scFv that was constructed in this study could be an attractive approach for treating allergic disorders.


Assuntos
Interleucina-4 , Lactococcus lactis , Microrganismos Geneticamente Modificados , Anticorpos de Cadeia Única , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética
18.
Anim Sci J ; 91(1): e13436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32761774

RESUMO

Probiotics are growing alternatives to antibiotics, and can contribute to the prevention and treatment of diseases and enhance livestock production. Lactobacillus (L.) ingluviei is a novel probiotic species with growth-enhancement effects; however, this species remains poorly understood, and there have been (to our knowledge) no studies focusing on its immunological effects. Here, we isolated L. ingluviei C37 (LIC37) from chicken and evaluated the bacterium's immunomodulatory properties to explore its probiotic potential. Real-time quantitative PCR and ELISA showed that in vitro exposure of inflammation-stimulated mouse peritoneal macrophages to heat-killed LIC37 led to decreases in tumor necrosis factor-α and interleukin (IL)-6 levels and an increase in IL-10. These findings suggested that LIC37 exerts anti-inflammatory effects by modulating cytokine profiles. This species may be an attractive probiotic bacterial strain for use in animal production.


Assuntos
Galinhas/microbiologia , Inflamação/prevenção & controle , Lactobacillus , Lipopolissacarídeos , Macrófagos/imunologia , Animais , Imunomodulação , Camundongos
19.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801170

RESUMO

Differences in individual host responses have emerged as an issue regarding the health benefits of probiotics. Here, we applied ribosome engineering (RE) technology, developed in an actinomycete study, to Lacticaseibacillus rhamnosus GG (LGG). RE can effectively enhance microbial potential by using antibiotics to induce spontaneous mutations in the ribosome and/or RNA polymerase. In this study, we identified eight types of streptomycin resistance mutations in the LGG rpsL gene, which encodes ribosomal protein S12. Notably, LGG harboring the K56N mutant (LGG-MTK56N) expressed high levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the cell surface compared with the LGG wild type (LGG-WT). GAPDH plays a key role in colonic mucin adhesion. Indeed, LGG-MTK56N significantly increased type A human colonic mucin adhesion compared to LGG-WT in experiments using the Biacore system. The ability to adhere to the colon is an important property of probiotics; thus, these results suggest that RE is an effective breeding strategy for probiotic lactic acid bacteria.IMPORTANCE We sought to apply ribosome engineering (RE) to probiotic lactic acid bacteria and to verify RE's impact. Here, we showed that one mutant of RE Lacticaseibacillus rhamnosus GG (LGG-MTK56N) bore a GAPDH on the cell surface; the GAPDH was exported via an ABC transporter. Compared to the wild-type parent, LGG-MTK56N adhered more strongly to human colonic mucin and exhibited a distinct cell size and shape. These findings demonstrate that RE in LGG-MTK56N yielded dramatic changes in protein synthesis, protein transport, and cell morphology and affected adherence to human colonic mucin.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Lacticaseibacillus rhamnosus/genética , Mucinas/fisiologia , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Bioengenharia , Colo/microbiologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Lacticaseibacillus rhamnosus/enzimologia
20.
Mol Biol Rep ; 47(9): 6717-6725, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32808115

RESUMO

Adipose tissue inflammation enhances the symptoms of metabolic syndrome. Flavonifractor plautii, a bacterium present in human feces, has been reported to participate in the metabolism of catechin in the gut. The precise function of F. plautii remains unclear. We assessed the immunoregulatory function of F. plautii both in vitro and in vivo. In vitro, we showed that both viable and heat-killed F. plautii attenuated TNF-α transcript accumulation in lipopolysaccharide-stimulated RAW 264.7 cells. For the in vivo experiment, male C57BL/6 were placed on a high-fat diet (HFD) for 11 weeks. During the final two weeks on the HFD, the animals were administered with F. plautii by once-daily oral gavage. The oral administration of F. plautii attenuated the increase in TNF-α transcription otherwise seen in the epididymal adipose tissue of HFD-fed obese mice (HFD + F. plautii). The composition of the microbial population (at the genus level) in the cecal contents of the HFD + F. plautii mice was altered considerably. In particular, the level of Sphingobium was decreased significantly, and that of Lachnospiraceae was increased significantly, in the HFD + F. plautii group. Obesity is closely associated with the development of inflammation in adipose tissue. F. plautii may be involved in inhibition of TNF-α expression in inflammatory environments. Our results demonstrated that F. plautii may be useful for alleviating the inflammatory responses of adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Clostridiales , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo/imunologia , Administração Oral , Animais , Clostridiales/química , Clostridiales/isolamento & purificação , Dieta Hiperlipídica , Microbioma Gastrointestinal/genética , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Sphingomonadaceae/isolamento & purificação , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...