Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886388

RESUMO

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Assuntos
Biodiversidade , Magnoliopsida , Filogenia , China , Magnoliopsida/crescimento & desenvolvimento , Altitude , Fenômenos Geológicos , Ecossistema
2.
Nat Commun ; 15(1): 4066, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744885

RESUMO

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Assuntos
Archaea , Genoma Arqueal , Fontes Termais , Metagenoma , Metagenômica , Filogenia , Fontes Termais/microbiologia , Archaea/genética , Archaea/classificação , China , Metagenômica/métodos , Biodiversidade , Concentração de Íons de Hidrogênio , Enxofre/metabolismo , Temperatura , Ecossistema
3.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565528

RESUMO

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ecossistema , Fósforo , Metagenoma/genética , Solo
4.
Environ Sci Technol ; 58(16): 7087-7098, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651173

RESUMO

Aerobic anoxygenic phototrophic bacteria (AAPB) contribute profoundly to the global carbon cycle. However, most AAPB in marine environments are uncultured and at low abundance, hampering the recognition of their functions and molecular mechanisms. In this study, we developed a new culture-independent method to identify and sort AAPB using single-cell Raman/fluorescence spectroscopy. Characteristic Raman and fluorescent bands specific to bacteriochlorophyll a (Bchl a) in AAPB were determined by comparing multiple known AAPB with non-AAPB isolates. Using these spectroscopic biomarkers, AAPB in coastal seawater, pelagic seawater, and hydrothermal sediment samples were screened, sorted, and sequenced. 16S rRNA gene analysis and functional gene annotations of sorted cells revealed novel AAPB members and functional genes, including one species belonging to the genus Sphingomonas, two genera affiliated to classes Betaproteobacteria and Gammaproteobacteria, and function genes bchCDIX, pucC2, and pufL related to Bchl a biosynthesis and photosynthetic reaction center assembly. Metagenome-assembled genomes (MAGs) of sorted cells from pelagic seawater and deep-sea hydrothermal sediment belonged to Erythrobacter sanguineus that was considered as an AAPB and genus Sphingomonas, respectively. Moreover, multiple photosynthesis-related genes were annotated in both MAGs, and comparative genomic analysis revealed several exclusive genes involved in amino acid and inorganic ion metabolism and transport. This study employed a new single-cell spectroscopy method to detect AAPB, not only broadening the taxonomic and genetic contents of AAPB in marine environments but also revealing their genetic mechanisms at the single-genomic level.


Assuntos
Metagenômica , Água do Mar , Metagenômica/métodos , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Análise Espectral Raman , Filogenia , Análise de Célula Única
5.
Environ Sci Technol ; 58(11): 5024-5034, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38454313

RESUMO

Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.


Assuntos
Cianobactérias , Microcystis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Ribossômico 16S/genética , Ecossistema , Proliferação Nociva de Algas , Cianobactérias/genética , Lagos/microbiologia , Microcystis/genética
6.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365241

RESUMO

Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Temperatura , Archaea/genética , Archaea/metabolismo , Oxirredução , Nitrogênio/metabolismo , Enxofre/metabolismo , Concentração de Íons de Hidrogênio , Filogenia
7.
Sci Total Environ ; 898: 165584, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467988

RESUMO

The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.


Assuntos
Microbiota , Sulfatos , Filogenia , Bactérias/genética , Archaea , Ácidos
8.
Microbiome ; 11(1): 142, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365664

RESUMO

BACKGROUND: Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples. RESULTS: Abundant bacteria that carry C-P lyase clusters were identified in plankton samples from freshwater Lakes Dianchi and Taihu during Microcystis bloom periods. Metagenomic analysis of 162 non-axenic laboratory strains of cyanobacteria (consortia cultures containing heterotrophic bacteria) showed that 20% (128/647) of high-quality bins from eighty of these consortia encode intact C-P lyase clusters, with an abundance ranging up to nearly 13%. Phycospheric bacterial phosphonate catabolism genes were expressed continually across bloom seasons, as demonstrated through metatranscriptomic analysis using sixteen field Microcystis aggregate samples. Coculturing experiments revealed that although Microcystis cultures did not catabolize methylphosphonate when axenic, they demonstrated sustained growth when cocultured with phosphonate-utilizing phycospheric bacteria in medium containing methylphosphonate as the sole source of phosphorus. CONCLUSIONS: The recruitment of heterotrophic phosphonate-degrading phycospheric bacteria by cyanobacteria is a hedge against phosphorus scarcity by facilitating phosphonate availability. Cyanobacterial consortia are likely primary contributors to aquatic phosphonate mineralization, thereby facilitating sustained cyanobacterial growth, and even bloom maintenance, in phosphate-deficient waters. Video Abstract.


Assuntos
Cianobactérias , Microcystis , Organofosfonatos , Microcystis/genética , Microcystis/metabolismo , Ecossistema , Organofosfonatos/metabolismo , Cianobactérias/genética , Fitoplâncton , Lagos/microbiologia , Fósforo/metabolismo
9.
mSystems ; 8(2): e0125222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943058

RESUMO

"Candidatus Parvarchaeales" microbes, representing a DPANN archaeal group with limited metabolic potential and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28 Parvarchaeales-associated metagenome-assembled genomes (MAGs) representing two orders and five genera were recovered. Among them, we identified three new genera and proposed the names "Candidatus Jingweiarchaeum," "Candidatus Haiyanarchaeum," and "Candidatus Rehaiarchaeum," with the former two belonging to a new order, "Candidatus Jingweiarchaeales." Further analyses of the metabolic potentials revealed substantial niche differentiation between Jingweiarchaeales and Parvarchaeales. Jingweiarchaeales may rely on fermentation, salvage pathways, partial glycolysis, and the pentose phosphate pathway (PPP) for energy conservation reservation, while the metabolic potentials of Parvarchaeales might be more versatile. Comparative genomic analyses suggested that Jingweiarchaeales favor habitats with higher temperatures and that Parvarchaeales are better adapted to acidic environments. We further revealed that the thermal adaptation of these lineages, especially Haiyanarchaeum, might rely on genomic features such as the usage of specific amino acids, genome streamlining, and hyperthermophile featured genes such as rgy. Notably, the adaptation of Parvarchaeales to acidic environments was possibly driven by horizontal gene transfer (HGT). The reconstruction of ancestral states demonstrated that both may have originated from thermal and neutral environments and later spread to mesothermal and acidic environments. These evolutionary processes may also be accompanied by adaptation to oxygen-rich environments via HGT. IMPORTANCE "Candidatus Parvarchaeales" microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments. By the discovery of potential new order-level lineages, "Ca. Jingweiarchaeales," and in-depth comparative genomic analysis, we unveiled the functional differentiation of these lineages. Furthermore, we show that the adaptation of these lineages to high-temperature and acidic environments was driven by different strategies, with the former relying more on genomic characteristics such as genome streamlining and amino acid compositions and the latter relying more on the acquisition of genes associated with acid tolerance. Finally, by the reconstruction of the ancestral states of the optimal growth temperature (OGT) and isoelectric point (pI), we showed the potential evolutionary process of Parvarchaeales-related lineages with regard to the shift from the high-temperature environment of their common ancestors to low-temperature (potentially acidic) environments.


Assuntos
Evolução Biológica , Metagenoma , Metagenoma/genética , Filogenia , Adaptação Fisiológica/genética , Archaea/genética , Ácidos/metabolismo , Aminoácidos/genética
10.
Mol Ecol ; 32(13): 3686-3701, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965005

RESUMO

The extremely high species diversity of soil bacterial community has fascinated and puzzled community ecologists. Although theory predicts that fluctuations in environments can facilitate diversity maintenance, the effects of fluctuating temperature on species diversity have rarely been investigated in species-rich microbial communities. Here, we examined whether fluctuating temperature had positive effects on species diversity relative to constant temperatures in soil bacterial communities, and investigated the effects of fluctuating temperature on bacterial performances (changes in relative abundance). We performed a temperature manipulation experiment with soils collected from temperate and subtropical zones, where the soils were subjected to constant high, low or fluctuating temperatures. We found that fluctuating temperatures showed significant positive effects on species diversity. The time-averaged effect of fluctuating temperatures (i.e., averaging out the differences between species in their environment-dependent performances) appeared to delay species loss in both the temperate and the subtropical communities. In addition, we found that the performances of temperature-responsive species at fluctuating temperatures significantly deviated from their time-weighted average performances at constant high and low temperatures, which was defined as fluctuation-dependent effects in our study. Intriguingly, fluctuation-dependent effects beyond time-averaged effect led to an opposite trend: differences in temperature-responsive species' performances decreased in the temperate communities, but increased in the subtropical communities. Our findings provide new insights into diversity maintenance in soil bacterial communities, and imply that the effects of fluctuating temperature on species diversity in soil bacterial community might vary across latitude.


Assuntos
Microbiota , Solo , Temperatura , Bactérias/genética , Microbiota/genética , Microbiologia do Solo
11.
Cell Rep ; 42(3): 112158, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827180

RESUMO

The biology of Korarchaeia remains elusive due to the lack of genome representatives. Here, we reconstruct 10 closely related metagenome-assembled genomes from hot spring habitats and place them into a single species, proposed herein as Panguiarchaeum symbiosum. Functional investigation suggests that Panguiarchaeum symbiosum is strictly anaerobic and grows exclusively in thermal habitats by fermenting peptides coupled with sulfide and hydrogen production to dispose of electrons. Due to its inability to biosynthesize archaeal membranes, amino acids, and purines, this species likely exists in a symbiotic lifestyle similar to DPANN archaea. Population metagenomics and metatranscriptomic analyses demonstrated that genes associated with amino acid/peptide uptake and cell attachment exhibited positive selection and were highly expressed, supporting the proposed proteolytic catabolism and symbiotic lifestyle. Our study sheds light on the metabolism, evolution, and potential symbiotic lifestyle of Panguiarchaeum symbiosum, which may be a unique host-dependent archaeon within the TACK superphylum.


Assuntos
Archaea , Fontes Termais , Simbiose , Simbiose/genética , Fontes Termais/microbiologia , Fermentação , Anaerobiose , Aminoácidos/metabolismo , Coenzimas/metabolismo , Filogeografia , Polimorfismo de Nucleotídeo Único/genética , Enxofre/metabolismo , Peptídeos/metabolismo , Proteólise , Archaea/classificação , Archaea/citologia , Archaea/genética , Adesão Celular/genética , Genes Arqueais , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Metagenômica , Metagenoma
12.
mSystems ; 8(1): e0073622, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507660

RESUMO

Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.


Assuntos
Compostos de Metilmercúrio , Compostos de Metilmercúrio/análise , Bactérias/genética , Filogenia , Metagenoma , Firmicutes/genética
13.
J Hazard Mater ; 443(Pt B): 130255, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327844

RESUMO

Mining-impacted environments are distributed globally and have become increasingly recognized as hotspots of antibiotic resistance genes (ARGs). However, there are currently no reports on treatment technologies to deal with such an important environmental problem. To narrow this knowledge gap, we implemented a phytostabilization project in an acidic copper mine tailings pond and employed metagenomics to explore ARG characteristics in the soil samples. Our results showed that phytostabilization decreased the total ARG abundance in 0-10 cm soil layer by 75 %, which was companied by a significant decrease in ARG mobility, and a significant increase in ARG diversity and microbial diversity. Phytostabilization was also found to drastically alter the ARG host composition and to significantly reduce the total abundance of virulence factor genes of ARG hosts. Soil nutrient status, heavy metal toxicity and SO42- concentration were important physicochemical factors to affect the total ARG abundance, while causal mediation analysis showed that their effects were largely mediated by the changes in ARG mobility and microbial diversity. The increase in ARG diversity associated with phytostabilization was mainly mediated by a small subgroup of ARG hosts, most of which could not be classified at the genus level and deserve further research in the future.


Assuntos
Cobre , Lagoas , Cobre/toxicidade , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Solo/química , Antibacterianos/farmacologia
14.
Microb Ecol ; 86(2): 843-858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36205737

RESUMO

Metalliferous mine tailings ponds are generally characterized by low levels of nutrient elements, sustained acidic conditions, and high contents of toxic metals. They represent one kind of extreme environments that are believed to resemble the Earth's early environmental conditions. There is increasing evidence that the diversity of fungi inhabiting mine tailings ponds is much higher than previously thought. However, little is known about functional guilds, community assembly, and co-occurrence patterns of fungi in such habitats. As a first attempt to address this critical knowledge gap, we employed high-throughput sequencing to characterize fungal communities in 33 mine tailings ponds distributed across 18 provinces of mainland China. A total of 5842 fungal phylotypes were identified, with saprotrophic fungi being the major functional guild. The predictors of fungal diversity in whole community and sub-communities differed considerably. Community assembly of the whole fungal community and individual functional guilds were primarily governed by stochastic processes. Total soil nitrogen and total phosphorus mediated the balance between stochastic and deterministic processes of the fungal community assembly. Co-occurrence network analysis uncovered a high modularity of the whole fungal community. The observed main modules largely consisted of saprotrophic fungi as well as various phylotypes that could not be assigned to known functional guilds. The richness of core fungal phylotypes, occupying vital positions in co-occurrence network, was positively correlated with edaphic properties such as soil enzyme activity. This indicates the important roles of core fungal phylotypes in soil organic matter decomposition and nutrient cycling. These findings improve our understanding of fungal ecology of extreme environments.


Assuntos
Lagoas , Microbiologia do Solo , China , Solo , Fungos/genética
15.
NPJ Biofilms Microbiomes ; 8(1): 71, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068230

RESUMO

The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.


Assuntos
Metagenoma , Metagenômica , Bactérias , Filogenia , Sulfatos/metabolismo
16.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946347

RESUMO

Biological nitrogen fixation (BNF) by cyanobacteria is of significant importance for the Earth's biogeochemical nitrogen cycle but is restricted to a few genera that do not form monophyletic group. To explore the evolutionary trajectory of BNF and investigate the driving forces of its evolution, we analyze 650 cyanobacterial genomes and compile the database of diazotrophic cyanobacteria based on the presence of nitrogen fixation gene clusters (NFGCs). We report that 266 of 650 examined genomes are NFGC-carrying members, and these potentially diazotrophic cyanobacteria are unevenly distributed across the phylogeny of Cyanobacteria, that multiple independent losses shaped the scattered distribution. Among the diazotrophic cyanobacteria, two types of NFGC exist, with one being ancestral and abundant, which have descended from diazotrophic ancestors, and the other being anaerobe-like and sparse, possibly being acquired from anaerobic microbes through horizontal gene transfer. Interestingly, we illustrate that the origin of BNF in Cyanobacteria coincide with two major evolutionary events. One is the origin of multicellularity of cyanobacteria, and the other is concurrent genetic innovations with massive gene gains and expansions, implicating their key roles in triggering the evolutionary transition from nondiazotrophic to diazotrophic cyanobacteria. Additionally, we reveal that genes involved in accelerating respiratory electron transport (coxABC), anoxygenic photosynthetic electron transport (sqr), as well as anaerobic metabolisms (pfor, hemN, nrdG, adhE) are enriched in diazotrophic cyanobacteria, representing adaptive genetic signatures that underpin the diazotrophic lifestyle. Collectively, our study suggests that multicellularity, together with concurrent genetic adaptations contribute to the evolution of diazotrophic cyanobacteria.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Cianobactérias/genética , Transferência Genética Horizontal , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Fotossíntese/genética , Filogenia
17.
ISME J ; 16(9): 2099-2113, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688988

RESUMO

Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.


Assuntos
Resistência a Múltiplos Medicamentos , Genes Bacterianos , Genes MDR , Mineração , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Humanos , Metagenoma , Filogenia
18.
Glob Chang Biol ; 28(14): 4459-4471, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452151

RESUMO

Low soil phosphorus (P) bioavailability causes the widespread occurrence of P-limited terrestrial ecosystems around the globe. Exploring the factors influencing soil P bioavailability at large spatial scales is critical for managing these ecosystems. However, previous studies have mostly focused on abiotic factors. In this study, we explored the effects of microbial factors on soil P bioavailability of terrestrial ecosystems using a country-scale sampling effort. Our results showed that soil microbial biomass carbon (MBC) and acid phosphatase were important predictors of soil P bioavailability of agro- and natural ecosystems across China although they appeared less important than total soil P. The two microbial factors had a positive effect on soil P bioavailability of both ecosystem types and were able to mediate the effects of several abiotic factors (e.g., mean annual temperature). Meanwhile, we revealed that soil phytase could affect soil P bioavailability at the country scale via ways similar to those of soil MBC and acid phosphatase, a pattern being more pronounced in agroecosystems than in natural ecosystems. Moreover, we obtained evidence for the positive effects of microbial genes encoding these enzymes on soil P bioavailability at the country scale although their effect sizes varied between the two ecosystem types. Taken together, this study demonstrated the remarkable effects of microbial factors on soil P bioavailability at a large spatial scale, highlighting the importance to consider microbial factors in managing the widespread P-limited terrestrial ecosystems.


Assuntos
Fósforo , Solo , Fosfatase Ácida , Carbono , Ecossistema , Nitrogênio , Microbiologia do Solo
19.
Water Res ; 217: 118385, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405550

RESUMO

Aquatic ecosystems comprise almost half of total global methane emissions. Recent evidence indicates that a few strains of cyanobacteria, the predominant primary producers in bodies of water, can produce methane under oxic conditions with methylphosphonate serving as substrate. In this work, we have screened the published 2 568 cyanobacterial genomes for genetic elements encoding phosphonate-metabolizing enzymes. We show that phosphonate degradation (phn) gene clusters are widely distributed in filamentous cyanobacteria, including several bloom-forming genera. Algal growth experiments revealed that methylphosphonate is an alternative phosphorous source for four of five tested strains carrying phn clusters, and can sustain cellular metabolic homeostasis of strains under phosphorus stress. Liberation of methane by cyanobacteria in the presence of methylphosphonate occurred mostly during the light period of a 12 h/12 h diurnal cycle and was suppressed in the presence of orthophosphate, features that are consistent with observations in natural aquatic systems under oxic conditions. The results presented here demonstrate a genetic basis for ubiquitous methane emission via cyanobacterial methylphosphonate mineralization, while contributing to the phosphorus redox cycle.


Assuntos
Cianobactérias , Organofosfonatos , Cianobactérias/genética , Cianobactérias/metabolismo , Ecossistema , Metano , Compostos Organofosforados , Fósforo/metabolismo
20.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408938

RESUMO

Oxidative dissolution of stibnite (Sb2S3), one of the most prevalent geochemical processes for antimony (Sb) release, can be promoted by Sb-oxidizing microbes, which were studied under alkaline and neutral conditions but rarely under acidic conditions. This work is dedicated to unraveling the enhancement mechanism of stibnite dissolution by typical acidophile Acidithiobacillus ferrooxidans under extremely acidic conditions. The results of solution behavior showed that the dissolution of Sb2S3 was significantly enhanced by A. ferrooxidans, with lower pH and higher redox potential values and higher [Sb(III)] and [Sb(V)] than the sterile control. The surface morphology results showed that the cells adsorbed onto the mineral surface and formed biofilms. Much more filamentous secondary minerals were formed for the case with A. ferrooxidans. Further mineral phase compositions and Sb/S speciation transformation analyses showed that more secondary products Sb2O3/SbO2-, Sb2O5/SbO3-, SO42-, as well as intermediates, such as S0, S2O32- were formed for the biotic case, indicating that the dissolution of Sb2S3 and the Sb/S speciation transformation was promoted by A. ferrooxidans. These results were further clarified by the comparative transcriptome analysis. This work demonstrated that through the interaction with Sb2S3, A. ferrooxidans promotes S/Sb oxidation, so as to enhance S/Sb transformation and thus the dissolution of Sb2S3.


Assuntos
Acidithiobacillus , Antimônio/química , Minerais/química , Oxirredução , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...