RESUMO
Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifies a 2×2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin mapping across steps of unit cell height demonstrates the existence of spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape fluctuations of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including unconventional magnetism and bulk-boundary correspondence.
RESUMO
It is becoming increasingly clear that breakthrough in quantum applications necessitates materials innovation. In high demand are conductors with robust topological states that can be manipulated at will. This is what we demonstrate in the present work. We discover that the pronounced topological response of a strongly correlated "Weyl-Kondo" semimetal can be genuinely manipulated-and ultimately fully suppressed-by magnetic fields. We understand this behavior as a Zeeman-driven motion of Weyl nodes in momentum space, up to the point where the nodes meet and annihilate in a topological quantum phase transition. The topologically trivial but correlated background remains unaffected across this transition, as is shown by our investigations up to much larger fields. Our work lays the ground for systematic explorations of electronic topology, and boosts the prospect for topological quantum devices.
RESUMO
Superconductivity originates from the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature Tc (ref. 1). Electron Cooper pairs in most superconductors form anti-parallel spin singlets with total spin S = 0 (ref. 2), although they can also form parallel spin-triplet Cooper pairs with S = 1 and an odd parity wavefunction3. Spin-triplet pairing is important because it can host topological states and Majorana fermions relevant for quantum computation4,5. Because spin-triplet pairing is usually mediated by ferromagnetic (FM) spin fluctuations3, uranium-based materials near an FM instability are considered to be ideal candidates for realizing spin-triplet superconductivity6. Indeed, UTe2, which has a Tc ≈ 1.6 K (refs. 7,8), has been identified as a candidate for a chiral spin-triplet topological superconductor near an FM instability7-14, although it also has antiferromagnetic (AF) spin fluctuations15,16. Here we use inelastic neutron scattering (INS) to show that superconductivity in UTe2 is coupled to a sharp magnetic excitation, termed resonance17-23, at the Brillouin zone boundary near AF order. Because the resonance has only been found in spin-singlet unconventional superconductors near an AF instability17-23, its observation in UTe2 suggests that AF spin fluctuations may also induce spin-triplet pairing24 or that electron pairing in UTe2 has a spin-singlet component.
RESUMO
The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here, we study the Kondo semimetal CeRu4Sn6 by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grünesien ratio reveals that, unexpectedly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response throughout the Brillouin zone and the temperature dependence of the static uniform susceptibility, indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, could be generic in the semimetal setting.
RESUMO
Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7 lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7 and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatial nanoscale patterns display a fractal geometry with power-law behavior extended over two decades, consistent with being in proximity to a critical point. Our discovery reveals a nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.
RESUMO
Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau's order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime. Here we report the discovery of a giant spontaneous Hall effect in the Kondo semimetal [Formula: see text] that is noncentrosymmetric but preserves time-reversal symmetry. We attribute this finding to Weyl nodes-singularities of the Berry curvature-that emerge in the immediate vicinity of the Fermi level due to the Kondo interaction. We stress that this phenomenon is distinct from the previously detected anomalous Hall effect in materials with broken time-reversal symmetry; instead, it manifests an extreme topological response that requires a beyond-perturbation-theory description of the previously proposed nonlinear Hall effect. The large magnitude of the effect in even tiny electric and zero magnetic fields as well as its robust bulk nature may aid the exploitation in topological quantum devices.
RESUMO
Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana fermions important for quantum computation. The uranium-based heavy-fermion superconductor UTe_{2} has been argued as a spin-triplet superconductor similar to UGe_{2}, URhGe, and UCoGe, where the superconducting phase is near (or coexists with) a ferromagnetic (FM) instability and spin-triplet electron pairing is driven by FM spin fluctuations. Here we use neutron scattering to show that, although UTe_{2} exhibits no static magnetic order down to 0.3 K, its magnetism in the [0,K,L] plane is dominated by incommensurate spin fluctuations near an antiferromagnetic ordering wave vector and extends to at least 2.6 meV. We are able to understand the dominant incommensurate spin fluctuations of UTe_{2} in terms of its electronic structure calculated using a combined density-functional and dynamic mean-field theory.
RESUMO
Fractionalized excitations develop in many unusual many-body states such as quantum spin liquids, disordered phases that cannot be described using any local order parameter. Because these exotic excitations correspond to emergent degrees of freedom, how to probe them and establish their existence is a long-standing challenge. We present a general procedure to reveal the fractionalized excitations using real-space entanglement entropy in critical spin liquids that are particularly relevant to experiments. Moreover, we show how to use the entanglement entropy to construct the corresponding spinon Fermi surface. Our work defines a new pathway to establish and characterize exotic excitations in novel quantum phases of matter.
RESUMO
Quantum critical points often arise in metals perched at the border of an antiferromagnetic order. The recent observation of singular and dynamically scaling charge conductivity in an antiferromagnetic quantum critical heavy fermion metal implicates beyond-Landau quantum criticality. Here we study the charge and spin dynamics of a Kondo destruction quantum critical point (QCP), as realized in an SU(2)-symmetric Bose-Fermi Kondo model. We find that the critical exponents and scaling functions of the spin and single-particle responses of the QCP in the SU(2) case are essentially the same as those of the large-N limit, showing that 1/N corrections are subleading. Building on this insight, we demonstrate that the charge responses at the Kondo destruction QCP are singular and obey ω/T scaling. This property persists at the Kondo destruction QCP of the SU(2)-symmetric Kondo lattice model.
RESUMO
We study the quantum phase transitions in the nickel pnctides, CeNi2-δ(As1-xPx)2 (δ ≈ 0.07-0.22) polycrystalline samples. This series displays the distinct heavy fermion behavior in the rarely studied parameter regime of dilute carrier limit. We systematically investigate the magnetization, specific heat and electrical transport down to low temperatures. Upon increasing the P-content, the antiferromagnetic order of the Ce-4f moment is suppressed continuously and vanishes at xc ~ 0.55. At this doping, the temperature dependences of the specific heat and longitudinal resistivity display non-Fermi liquid behavior. Both the residual resistivity ρ0 and the Sommerfeld coefficient γ0 are sharply peaked around xc. When the P-content reaches close to 100%, we observe a clear low-temperature crossover into the Fermi liquid regime. In contrast to what happens in the parent compound x = 0.0 as a function of pressure, we find a surprising result that the non-Fermi liquid behavior persists over a nonzero range of doping concentration, xc < x < 0.9. In this doping range, at the lowest measured temperatures, the temperature dependence of the specific-heat coefficient is logarithmically divergent and that of the electrical resistivity is linear. We discuss the properties of CeNi2-δ(As1-xPx)2 in comparison with those of its 1111 counterpart, CeNi(As1-xPx)O. Our results indicate a non-Fermi liquid phase in the global phase diagram of heavy fermion metals.
RESUMO
Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with 2 distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.
RESUMO
Motivated by the recent low-temperature experiments on bulk FeSe, we study the electron correlation effects in a multiorbital model for this compound in the nematic phase using the U(1) slave-spin theory. We find that a finite nematic order helps to stabilize an orbital selective Mott phase. Moreover, we propose that when the d- and s-wave bond nematic orders are combined with the ferro-orbital order, there exists a surprisingly large orbital selectivity between the xz and yz orbitals even though the associated band splitting is relatively small. Our results explain the seemingly unusual observation of strong orbital selectivity in the nematic phase of FeSe, uncover new clues on the nature of the nematic order, and set the stage to elucidate the interplay between superconductivity and nematicity in iron-based superconductors.
RESUMO
The nature of the pairing symmetry of the first heavy fermion superconductor CeCu2Si2 has recently become the subject of controversy. While CeCu2Si2 was generally believed to be a d-wave superconductor, recent low-temperature specific heat measurements showed evidence for fully gapped superconductivity, contrary to the nodal behavior inferred from earlier results. Here, we report London penetration depth measurements, which also reveal fully gapped behavior at very low temperatures. To explain these seemingly conflicting results, we propose a fully gapped [Formula: see text] band-mixing pairing state for CeCu2Si2, which yields very good fits to both the superfluid density and specific heat, as well as accounting for a sign change of the superconducting order parameter, as previously concluded from inelastic neutron scattering results.
RESUMO
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3 Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
RESUMO
We report on temperature-dependent pair distribution function measurements of Sr_{1-x}Na_{x}Fe_{2}As_{2}, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C_{4} phase. Quantitative refinements indicate that the instantaneous local structure in the C_{4} phase comprises fluctuating orthorhombic regions with a length scale of â¼2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C_{4} phase and the neighboring C_{2} and superconducting phases.
RESUMO
The magnetic and nematic properties of the iron chalcogenides have recently been the subject of intense interest. Motivated by the proposed antiferroquadrupolar and Ising-nematic orders for the bulk FeSe, we study the phase diagram of an S=1 generalized bilinear-biquadratic model with multineighbor interactions. We find a large parameter regime for a (π, 0) antiferroquadrupolar phase, showing how quantum fluctuations stabilize it by lifting an infinite degeneracy of certain semiclassical states. Evidence for this C_{4}-symmetry-breaking quadrupolar phase is also provided by an unbiased density matrix renormalization group analysis. We discuss the implications of our results for FeSe and related iron-based superconductors.
RESUMO
SmB6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap El and high temperature gap Eh) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3â¯K) conditions. We associate the gaps with the bulk Kondo hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at â¼4â¯GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. Our results raise the new prospect for studying topological electronic states in quantum critical materials settings.
RESUMO
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1-xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity â¼x=0.05. Our discovery of a Mott-insulating state in NaFe1-xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.
RESUMO
The iron-based superconductors AFe_{2}As_{2} with A=K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state.