Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Appl Mater Interfaces ; 11(37): 34178-34187, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31442024


Tandem solar cells (SCs) based on perovskite and silicon represent an exciting possibility for a breakthrough in photovoltaics, enhancing SC power conversion efficiency (PCE) beyond the single-junction limit while keeping the production cost low. A critical aspect to push the tandem PCE close to its theoretical limit is the development of high-performing semitransparent perovskite top cells, which also allow suitable near-infrared transmission. Here, we have developed highly efficient semitransparent perovskite SCs (PSCs) based on both mesoporous and planar architectures, employing Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 and FA0.87Cs0.13PbI2Br perovskites with band gaps of 1.58 and 1.72 eV, respectively, which achieved PCEs well above 17 and 14% by detailed control of the deposition methods, thickness, and optical transparency of the interlayers and the semitransparent electrode. By combining our champion 1.58 eV PSCs (PCE of 17.7%) with an industrial-relevant low-cost n-type Si SCs, a four-terminal (4T) tandem efficiency of 25.5% has been achieved. Moreover, for the first time, 4T tandem SCs' performances have been measured in the low light intensity regime, achieving a PCE of 26.6%, corresponding to revealing a relative improvement above 9% compared to the standard 1 sun illumination condition. These results are very promising for their implementation under field-operating conditions.

Appl Opt ; 54(14): 4366-73, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967490


Light scattering superstrates are important for thin-film a-Si:H solar cells. In this work, aluminum-induced texture (AIT) glass, covered with nonetched Al-doped ZnO (AZO), is investigated as an alternative to the commonly used planar glass with texture-etched AZO superstrate. Four different AIT glasses with different surface roughnesses and different lateral feature sizes are investigated for their effects on light trapping in a-Si:H solar cells. For comparison, two reference superstrates are investigated as well: planar glass covered with nonetched AZO and planar glass covered with texture-etched AZO. Single-junction a-Si:H solar cells are deposited onto each superstrate, and the scattering properties (haze and angular resolved scattering) as well as the solar cell characteristics (current-voltage and external quantum efficiency) are measured and compared. The results indicate that AIT glass superstrates with nonetched AZO provide similar, or even superior, light trapping than the standard reference superstrate, which is demonstrated by a higher short-circuit current Jsc and a higher external quantum efficiency. Using the trapped light fraction δ, a quantity based on the integrated light scattering at the AZO/a-Si:H interface, we show that Jsc linearly increases with δ in the scattering regime of the samples, regardless of the type of superstrate used.