Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Rev Lett ; 117(21): 216401, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911533


The "failed Kondo insulator" CeNiSn has long been suspected to be a nodal metal, with a node in the hybridization matrix elements. Here we carry out a series of Nernst effect experiments to delineate whether the severely anisotropic magnetotransport coefficients do indeed derive from a nodal metal or can simply be explained by a highly anisotropic Fermi surface. Our experiments reveal that despite an almost twentyfold anisotropy in the Hall conductivity, the large Nernst signal is isotropic. Taken in conjunction with the magnetotransport anisotropy, these results provide strong support for an isotropic Fermi surface with a large anisotropy in quasiparticle mass derived from a nodal hybridization.

J Am Chem Soc ; 135(50): 18824-30, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24246057


The insulating, fully ordered, double perovskite Sr2CoOsO6 undergoes two magnetic phase transitions. The Os(VI) ions order antiferromagnetically with a propagation vector k = (1/2, 1/2, 0) below TN1 = 108 K, while the high-spin Co(II) ions order antiferromagnetically with a propagation vector k = (1/2, 0, 1/2) below TN2 = 70 K. Ordering of the Os(VI) spins is accompanied by a structural distortion from tetragonal I4/m symmetry to monoclinic I2/m symmetry, which reduces the frustration of the face centered cubic lattice of Os(VI) ions. Density functional theory calculations show that the long-range Os-O-Co-O-Os and Co-O-Os-O-Co superexchange interactions are considerably stronger than the shorter Os-O-Co interactions. The poor energetic overlap between the 3d orbitals of Co and the 5d orbitals of Os appears to be responsible for this unusual inversion in the strength of short and long-range superexchange interactions.

Nature ; 484(7395): 493-7, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22538612


A quantum critical point (QCP) arises when a continuous transition between competing phases occurs at zero temperature. Collective excitations at magnetic QCPs give rise to metallic properties that strongly deviate from the expectations of Landau's Fermi-liquid description, which is the standard theory of electron correlations in metals. Central to this theory is the notion of quasiparticles, electronic excitations that possess the quantum numbers of the non-interacting electrons. Here we report measurements of thermal and electrical transport across the field-induced magnetic QCP in the heavy-fermion compound YbRh(2)Si(2) (refs 2, 3). We show that the ratio of the thermal to electrical conductivities at the zero-temperature limit obeys the Wiedemann-Franz law for magnetic fields above the critical field at which the QCP is attained. This is also expected for magnetic fields below the critical field, where weak antiferromagnetic order and a Fermi-liquid phase form below 0.07 K (at zero field). At the critical field, however, the low-temperature electrical conductivity exceeds the thermal conductivity by about 10 per cent, suggestive of a non-Fermi-liquid ground state. This apparent violation of the Wiedemann-Franz law provides evidence for an unconventional type of QCP at which the fundamental concept of Landau quasiparticles no longer holds. These results imply that Landau quasiparticles break up, and that the origin of this disintegration is inelastic scattering associated with electronic quantum critical fluctuations--these insights could be relevant to understanding other deviations from Fermi-liquid behaviour frequently observed in various classes of correlated materials.

Phys Rev Lett ; 108(6): 066405, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401095


Thermodynamic and transport properties of the La-diluted Kondo lattice CeNi(2)Ge(2) were studied in a wide temperature range. The Ce-rich alloys Ce(1-x)La(x)Ni(2)Ge(2) were found to exhibit distinct features of the coherent heavy Fermi liquid. At intermediate compositions (0.7≤x≤0.9), non-Fermi liquid properties have been observed, followed by the local Fermi liquid behavior in the dilute limit. The 4f-electron contribution to the specific heat was found to follow the predictions of the Kondo-impurity model in both the local as well as the coherent regimes, with the characteristic Kondo temperature decreasing rapidly from about 30 K for the parent compound CeNi(2)Ge(2) to about 1 K in the most dilute samples. The specific heat does not show any evidence for the emergence of a new characteristic energy scale related to the formation of the coherent Kondo lattice.

Inorg Chem ; 50(20): 10387-96, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21905757


The europium-containing clathrate-I Eu(x)Ba(8-x)Cu(16)P(30) was synthesized from the elements. Powder X-ray diffraction in combination with energy dispersive X-ray absorption spectroscopy (EDXS) and metallographic studies showed the homogeneity range with x ≤ 1.5. Determination of the crystal structure confirmed the presence of an orthorhombic superstructure of clathrate-I and revealed that Eu atoms exclusively resided in small pentagonal-dodecahedral cages. Magnetic measurements together with X-ray absorption spectroscopy are consistent with a 4f(7) (Eu(2+)) ground state for Eu(x)Ba(8-x)Cu(16)P(30). Below 3 K the Eu moments order antiferromagnetically. Resistivity measurements revealed metallic behavior of the investigated clathrate, in line with the composition deviating from the Zintl counting scheme. Local vibrations of the guest atoms inside the cages are analyzed with the help of specific heat investigations.