Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
J Biotechnol ; 388: 11-23, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614441

RESUMO

Acids play a crucial role in enhancing the flavor of strong-aroma Baijiu, and among them, caproic acid holds significant importance in determining the flavor of the final product. However, the metabolic synthesis of caproic acid during the production process of Baijiu has received limited attention, resulting in fluctuations in caproic acid content among fermentation batches and generating production instability. Acid-producing bacteria found in the cellar mud are the primary microorganisms responsible for caproic acid synthesis, but there is a lack of research on the related microbial resources and their metabolic properties. Therefore, it is essential to identify and investigate these acid-producing microorganisms from cellar mud to ensure stable caproic acid synthesis. In this study, a unique strain was isolated from the cellar mud, exhibiting a 98.12 % similarity in its 16 S rRNA sequence and an average nucleotide identity of 79.57 % with the reference specie, together with the DNA-DNA hybridization of 23.20 % similarity, confirming the distinct species boundaries. The strain was able to produce 1.22 ± 0.55 g/L caproic acid from glucose. Through genome sequencing, annotation, and bioinformatics analysis, the complete pathway of caproic acid synthesis from glucose was elucidated, and the catalytic mechanism of the key thiolase for caproic acid synthesis was investigated. These findings provide useful fundamental data for revealing the metabolic properties of caproic acid-producing bacteria found in cellar mud.

2.
Food Chem X ; 22: 101353, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623502

RESUMO

The volatile compounds in Dacha liquor (DL) and Ercha liquor (EL) from Niulanshan Erguotou Baijiu (NEB) were analyzed. The results demonstrated that a total of 34 odorants were identified. For the first time, the products of different brewing stages were analyzed using temperature-programmed headspace gas chromatography-ion mobility spectrometry (TP-HS-GC-IMS). The 3D fingerprint obtained revealed that the compounds exhibited different change patterns during the brewing process. Furthermore, the results of principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) revealed that hexanal, 3-hydroxy-2-butanone, trans-2-pentenal, and ethyl hexanoate could be used to distinguish different types of fermented grains; and hexanal, 1-pentanol, methyl isovalerate, isoamyl acetate, 3-hydroxy-2-butanone, ethyl hexanoate, ethyl acetate, ethyl 2-methylbutanoate, and ethyl pentanoate could be used to distinguish different types of distilled spirits. This study serves as a useful reference for enhancing quality control measures in the production of NEB.

3.
Food Chem ; 449: 139216, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38604031

RESUMO

This study aimed to identify saltiness-enhancing peptides from yeast protein and elucidate their mechanisms by molecular docking. Yeast protein hydrolysates with optimal saltiness-enhancing effects were prepared under conditions determined using an orthogonal test. Ten saltiness-enhancing peptide candidates were screened using an integrated virtual screening strategy. Sensory evaluation demonstrated that these peptides exhibited diverse taste characteristics (detection thresholds: 0.13-0.50 mmol/L). Peptides NKF, LGLR, WDL, NMKF, FDSL and FDGK synergistically or additively enhanced the saltiness of a 0.30% NaCl solution. Molecular docking revealed that these peptides predominantly interacted with TMC4 by hydrogen bonding, with hydrophilic amino acids from both peptides and TMC4 playing a pivotal role in their binding. Furthermore, Leu217, Gln377, Glu378, Pro474 and Cys475 were postulated as the key binding sites of TMC4. These findings establish a robust theoretical foundation for salt reduction strategies in food and provide novel insights into the potential applications of yeast proteins.

4.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602350

RESUMO

Ferulic acid (FA), predominantly existing in most cereals, can modulate the gut microbiome, but the influences of its metabolites on the microbial population and FA-transforming microorganisms are still unclear. In this study, FA and its potential phenolic metabolites were fermented in vitro for 24 h with the human fecal inoculum. A comparable short chain fatty acid (SCFA) production trend was observed in the presence and absence of substrates, suggesting limited contribution of FA mechanism to SCFA formation. Dihydroferulic acid, 3-(3,4-dihydroxyphenyl)propionic acid, and 3-(3-hydroxyphenyl)propionic acid were ascertained to be successive metabolites of FA, by tracking the intermediate variation. FA remarkably promoted the absolute abundances of total bacteria, while different metabolites affected bacterial growth of selective genera. Specific genera were identified as quantitatively correlating to the content of FA and its metabolites. Ultimately, FA-mediated gut microbiota modulation involves both the action of metabolizing microbes and the regulation effects of metabolites on bacterial growth.

5.
J Appl Microbiol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565314

RESUMO

AIMS: Ethyl hexanoate, one of the key flavor compounds in Strong-flavor Baijiu. To improve the content of ethyl hexanoate in Strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg·L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.

6.
ACS Appl Mater Interfaces ; 16(11): 14208-14217, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445958

RESUMO

Pesticide detection and monitoring are necessary for human health as the overapplication has serious consequences for environmental pollution. Herein, a proper modulation strategy was implemented to construct the photostimulus-responsive peptide-dot-centered covalent organic polymer (P-PCOP) nanoarchitecture for selective sensing of pesticides. The as-constructed P-PCOP was prepared at room temperature by using amino-containing peptide dots as a building block instead of common organic molecules, and the merits of P-PCOP enable it to reduce the steric hindrance of recognition, enhance the interfacial contact of the target, and facilitate the accessibility of sites, which promises to improve the sensitivity. The P-PCOF exhibited a low detection limit of 0.38 µg L-1 to cartap over the range of 1-80 µg L-1 (R2 = 0.9845), and the recoveries percentage in real samples was estimated to be 93.39-105.82%. More importantly, the DFT calculation confirmed the selective recognition ability of P-PCOP on chemical pesticides. In conjunction with a smartphone-integrated portable reading device, on-site chemical sensing is achieved. The proper modulation strategy of fixing a functional guest on the COP system contributes to the advanced structure-chemical properties that are conducive to their applications in chemical sensing.


Assuntos
Poluição Ambiental , Praguicidas , Humanos , Teoria da Densidade Funcional , Peptídeos , Polímeros
7.
J Sci Food Agric ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436499

RESUMO

BACKGROUND: Baijiu is a well-known alcoholic beverage in China and the quality is determined by various microorganisms during the fermentation process. Yeast is one of the most important microorganisms in the fermentation of baijiu. It has a strong esterification capacity and also affects the aroma. RESULTS: High-throughput sequencing results showed that the fermented grains (jiupei) during baijiu production were mainly composed of eight highly abundant yeast species. The species and abundance of yeasts changed significantly with the fermentation process. The flavor of 30 yeast strains in the jiupei was determined by a sniffing test and gas chromatography-mass spectrometry (GC-MS). The strain with the highest flavor substance content (2.34 mg L-1 ), named YX3205, was identified as Clavispora lusitaniae. Tolerance results showed that C. lusitaniae YX3205 can tolerate up to 15% (v v-1 ) ethanol. In a solid-state simulated fermentation experiment, the content of 24 flavor substances was significantly increased in the fortified group, and the total ester content reached 4240.73 µg kg-1 , which was 2.8 times higher than that of the control group. CONCLUSION: The present study demonstrated the potential of C. lusitaniae YX3205 to enhance the flavor of baijiu, thereby serving as a valuable strain for the improvement of the flavor quality of baijiu. © 2024 Society of Chemical Industry.

8.
Food Chem ; 447: 138995, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513496

RESUMO

Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos
9.
Food Chem ; 446: 138839, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428083

RESUMO

α-Dicarbonyl compounds (α-DCs) are important intermediates and precursors of harmful Maillard reaction products (e.g., acrylamide and late glycosylation end-products), and they exist widely in thermoprocessed sugar- or fat-rich foods. α-DCs and their end-products are prone to accumulation in the human body and lead to the development of various chronic diseases. Therefore, detection of α-DCs and their associated hazards in food samples is crucial. This paper reviews the preparation of molecularly imprinted polymers (MIPs) enabling visual intelligent responses and the strategies for recognition and capture of α-DCs and their associated hazards, and provides a comprehensive summary of the development of visual MIPs, including integration strategies and applications with real food samples. The visual signal responses as well as the mechanisms for hazard recognition and capture are highlighted. Current challenges and prospects for visual MIPs with advanced applications in food, agricultural and environmental samples are also discussed. This review will open new horizons regarding visual MIPs for recognition and inhibition of hazards in food safety.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Polímeros , Inocuidade dos Alimentos , Produtos Finais de Glicação Avançada
10.
Food Chem X ; 22: 101249, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38440058

RESUMO

Short peptides have become the focus of recent research due to their variable bioactivities, good digestibility and wide existences in food-derived protein hydrolysates. However, due to the high complexity of the samples, identifying short peptides still remains a challenge. In this work, a tool, named PeposX-Exhaust, was developed for short peptide identification. Through validation with known peptides, PeposX-Exhaust identified all the submitted spectra and the accuracy rate reached 75.36%, and the adjusted accuracy rate further reached 98.55% when with top 5 candidates considered. Compared with other tools, the accuracy rate by PeposX-Exhaust was at least 70% higher than two database-search tools and 15% higher than the other two de novo-sequencing tools, respectively. For further application, the numbers of short peptides identified from soybean, walnut, collagen and bonito protein hydrolysates reached 1145, 628, 746 and 681, respectively. This fully demonstrated the superiority of the tool in short peptide identification.

11.
Food Res Int ; 182: 114139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519171

RESUMO

The previously obtained chicken-derived umami peptides in the laboratory were evaluated for their saltiness-enhancing effect by sensory evaluation and S-curve, and the results revealed that peptides TPPKID, PKESEKPN, TEDWGR, LPLQDAH, NEFGYSNR, and LPLQD had significant saltiness-enhancing effects. In the binary solution system with salt, the ratio of the experimental detection threshold (129.17 mg/L) to the theoretical detection threshold (274.43 mg/L) of NEFGYSNR was 0.47, which had a synergistic saltiness-enhancing effect with salt. The model of transmembrane channel-like protein 4 (TMC4) channel protein was constructed by homology modeling, which had a 10-fold transmembrane structure and was well evaluated. Molecular docking and frontier molecular orbitals showed that the main active sites of TMC4 were Lys 471, Met 379, Cys 475, Gln 377, and Pro 380, and the main active sites of NEFGYSNR were Tyr, Ser and Asn. This study may provide a theoretical reference for low-sodium diets.


Assuntos
Galinhas , Peptídeos , Animais , Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas , Cloreto de Sódio na Dieta
12.
Food Chem X ; 21: 101187, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370307

RESUMO

In the process of defatting milk, preheating treatment is an important factor affecting the flavor of skim milk. Here, raw milk was preheated at different times and temperatures. Then laser confocal microscopy, multiple-light scattering instrument, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to analyze the microstructure of milk fat globule membrane (MFGM), milk stability, and MFGM protein (MFGMP) components. Results showed that phospholipid domain of MFGM changed from an ordered state (Lo) to a disordered state (Ld) with increase in treatment temperature and time, leading to an increase in MFGMP content in skim milk. During the stability test, the stability of raw milk decreased significantly with increase in preheating temperature, while the opposite was true for skim milk. Finally, the results of MFGMP differentiation analysis showed that, the content of ten taste-related MFGMPs in the control group samples was significantly lower compared to the optimal group (P < 0.05).

13.
Food Res Int ; 179: 114006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342533

RESUMO

To distinguish Chinese milks from different regions, 13 milk samples were gathered from 13 regions of China in this study: Inner Mongolia (IM), Xinjiang (XJ), Hebei (HB), Shanghai (SH), Beijing (BJ), Sichuan (SC), Ningxia (NX), Henan (HN), Tianjin (TJ), Qinghai (QH), Yunnan (YN), Guangxi (GX), and Tibet (XZ). Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with the electronic nose (E-nose) technology, was used to detect and analyze the volatile compounds in these milk samples. The qualitative and quantitative results identified 29 volatile chemicals, and we established a database of flavor profiles for the main milk-producing regions in China. E-nose analysis revealed variations in the odor of milk across different areas. Furthermore, results from partial least squares discriminant analysis (PLS-DA) and odor activity values (OAVs) suggested that seven volatile compounds: decane, 2-heptanone, 2-undecanone, 2-nonanone, 1-hexadecanol, 1-octen-3-ol, and (E)-2-nonenal, could be considered as key flavor compounds in Chinese milk products.


Assuntos
Leite , Odorantes , Animais , Leite/química , China , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Análise Discriminante
14.
Nutrients ; 16(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337742

RESUMO

Different protein sources can impact gut microbiota composition and abundance, and also participate in health regulation. In this study, mice were gavaged with yeast protein (YP), soybean protein isolate (SPI), and whey protein isolate (WPI) for 28 days. Body weights showed similar patterns across different protein administration groups. The ileum in YP-supplemented mice exhibited good morphology, and tight-junction (TJ) proteins were slightly upregulated. Immunoglobulin (Ig)A, IgM, and IgG levels in the ileum of different protein groups were significantly increased (p < 0.05). Interleukin (IL)-10 levels were significantly increased, whereas IL-6 levels were significantly reduced in the YP group when compared with the control (C) (p < 0.05). Glutathione peroxidase (GSH-Px) levels in the ileum were significantly increased in the YP group (p < 0.05). These results indicate that YP potentially improved intestinal immunity and inflammatory profiles. The relative abundances of Parabacteroides, Prevotella, and Pseudobutyrivibrio in the YP group were more enriched when compared with the C and SPI groups, and Parabacteroides was significantly upregulated when compared with the WPI group (p < 0.05). Overall, the results indicate that YP upregulates the beneficial bacteria and improves ileal immunity and anti-inflammatory capabilities.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Proteínas do Soro do Leite/farmacologia , Proteínas de Soja/farmacologia , Intestinos , Proteínas Fúngicas/farmacologia
15.
Food Res Int ; 180: 114032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395586

RESUMO

In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.


Assuntos
Poluição Ambiental , Alimento Funcional
16.
Food Res Int ; 178: 113908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309861

RESUMO

Yeast extract (YE) is derived from the soluble component in yeast cells, which is rich in peptides and has been used as a sweet-enhancing agent. It has the potential to be utilized to produce natural sweet-flavored peptides or sweet-enhancing peptides. To study the synergistic effect and mechanism of sweetness-enhancing peptides derived from YE, ultrafiltration fraction with molecular weight less than 1 kDa was screened according to sensory analysis, which showed a synergistic sweetening effect in stevioside and mogroside solution. Twenty potential taste peptides were identified from the screened fractions, among which EV, AM, AVDNIPVGPN and VDNIPVGPN showed sweetness-enhancing effects on both stevioside and mogroside. The sweetener-receptor-peptide complex was constructed to investigate the interaction of stevioside and mogroside to taste receptor type 1 member 2 accompanied by these peptides. The results of the molecular docking indicated that new hydrophobic interactions (Leu 279, Pro 308, Val 309, etc.) and hydrogen bonds (Ser 40, Ala 43, Asp 278, etc.) were formed between sweeteners and active sites in the venus flytrap domain. In conclusion, the presence of sweetness-enhancing peptides from YE improved the binding stability of sweeteners and receptors by increasing the binding interaction, especially the hydrophobic interactions, which contribute to the synergistic effect of sweetness-enhancing peptides.


Assuntos
Diterpenos do Tipo Caurano , Glucosídeos , Edulcorantes , Simulação de Acoplamento Molecular , Edulcorantes/análise , Diterpenos do Tipo Caurano/análise , Peptídeos/farmacologia
17.
J Agric Food Chem ; 72(10): 5222-5236, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38377589

RESUMO

Huangshui polysaccharides (HSPs) have attracted extensive attention recently for their biological activity and physicochemical property. This research investigated the extraction, structural characterization, and prebiotic activity of three different HSPs (HSP40-0, HSP60-0, and HSP80-0) in vitro to reveal the scientific support for the high-value utilization of Huangshui. HSPs were heteropolysaccharide with diverse structures and surface morphologies. Comprehensive analysis was conducted through 16S rRNA gene sequencing and metabolite profiling techniques, and results showed that HSPs had different potentials to regulate the gut microbiota due to their different structures; for instance, both HSP40-0 and HSP80-0 could notably increase the relative abundance of Bacteroidota, whereas HSP60-0 could increase the relative abundance of Phascolarctobacterium. In addition, HSPs upregulated beneficial differential metabolites, especially short-chain fatty acids (SCFAs). Fermentation products containing these metabolites exhibited anti-inflammatory effects on LPS-treated Caco-2 cells. This study will provide reference for exploring the relationship between the natural polysaccharide structure and the prebiotic activity and widen the application of Huangshui.


Assuntos
Microbioma Gastrointestinal , Humanos , Fermentação , RNA Ribossômico 16S , Células CACO-2 , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo
18.
J Agric Food Chem ; 72(10): 5403-5415, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38386648

RESUMO

Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 µg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 µg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 µmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.


Assuntos
Receptores Odorantes , Humanos , Receptores Odorantes/química , Células HEK293 , Furanos , Olfato , Odorantes/análise
19.
Food Chem ; 444: 138660, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330613

RESUMO

α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.


Assuntos
Produtos Finais de Glicação Avançada , Nanopartículas , Alimentos , Carboidratos , Peptídeos
20.
J Biosci Bioeng ; 137(5): 360-371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369397

RESUMO

The unique cellar fermentation process of Chinese strong-flavor Baijiu is the reason for its characteristic cellar aroma flavor. The types, abundance, community structure and metabolic activity of microorganisms in the pit mud directly affect the microbial balance in the white spirit production environment, promoting the formation of typical aromas and influencing the quality of CFSB. During the production process, the production of off-flavor in the cellar may occur. The aim of this study is to elucidate the differences in microbiota and flavor between normal pit mud and abnormal pit mud (pit mud with off-flavor). A total of 46 major volatile compounds were identified, and 24 bacterial genera and 21 fungal genera were screened. The esters, acids, and alcohols in the abnormal pit mud were lower than those in the normal pit mud, while the aldehydes were higher. 3-Methyl indole, which has been proven to be responsible for the muddy and musty flavors, was detected in both types of pit mud, and for the first time, high levels of 4-methylanisole was detected in the pit mud. The microbial composition of the two types of pit mud showed significant differences in the bacterial genera of Sporosarcina, Lactobacillus, Garciella, Anaerosalibacter, Lentimicrobium, HN-HF0106, Petrimonas, Clostridium_sensu_stricto_12 and Bacillus, and the fungal genera of Millerozyma, Penicillium, Mortierella, Monascus, Saccharomyces, Issatchenkia, Pithoascus, Pseudallescheria, and Wickerhamomyces. Additionally, we speculate that Sporosarcina is the predominant bacterial genus responsible for the imbalance of microbiota in pit mud.


Assuntos
Microbiota , Odorantes , Odorantes/análise , Bebidas Alcoólicas/análise , Bactérias/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...