Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.995
Filtrar
1.
Front Pharmacol ; 15: 1294122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948463

RESUMO

Introduction: Premenstrual dysphoric disorder (PMDD), a severe form of premenstrual syndrome (PMS), is a serious health disorder that affects patient moods. It is caused by cyclic psychological symptoms and its pathogenesis is still unclear. Abnormalities in the basolateral amygdala (BLA) orexin system, which are important causes of the development of depressive mood, have not been reported in PMDD, so exploring its intrinsic mechanisms is meaningful for enriching the pathomechanisms of PMDD. Methods: High performance liquid chromatography was used for the determination of the active ingredients of Jingqianshu granules. Developing a rat model of premenstrual depression using the forced swimming test (FST). The experiment consisted of two parts. In Part 1, the rats were divided into the control group, the model group, the model + Jingqianshu group, and the model + fluoxetine group. The FST, open field test, and elevated plus maze test, were used to assess the behavior of the rats as well as to evaluate the effect of drug intervention. Immunofluorescence and RT-qPCR were used to detect the expression of orexin and its receptors OX1R and OX2R genes and proteins. The expression of Toll-like receptor 4, nuclear factor kappa-B, tumor necrosis factor-α, interleukin 6, and interleukin-1ß in the BLA brain region was detected by Western-Blot. In part 2, the rats were injected intracerebrally with orexin-A. Observe the behavioral activities of rats in the control group, model group, and model+orexin-A group. Immunofluorescence was used to detect microglia in the BLA area of rats, and the expression levels of the above inflammatory factors were detected by Western-Blot. Results: The five components of Jingqianshu granules are: paeoniflorin, erulic acid, liquiritin, hesperidin, and paeonol. During the estrous cycle, rats exhibited depressive-like behavior during the non-receptive phase of the behavioral test, which disappeared during the receptive phase. Immunofluorescence and RT-qPCR showed reduced gene and protein expression of orexin, OX1R, and OX2R in the BLA region of rats in the model group.WB showed elevated levels of inflammatory factors. All returned to control levels after drug treatment. In part 2, injection of orexin-A into the BLA brain region of model rats resulted in reduced immunoreactivity of microglia and decreased expression levels of inflammatory factors. Discussion: Jianqianshu granules can achieve the purpose of treating premenstrual depression by regulating orexin-mediated inflammatory factors, which provides a new idea for further research on the pathogenesis of PMDD. However, the current study is still preliminary and the pathogenesis of PMDD is complex. Therefore, more in-depth exploration is needed.

2.
Heliyon ; 10(12): e33016, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994116

RESUMO

Addressing the challenges in detecting surface defects on ceramic disks, such as difficulty in detecting small defects, variations in defect sizes, and inaccurate defect localization, we propose an enhanced YOLOv5s algorithm. Firstly, we improve the anchor frame structure of the YOLOv5s model to enhance its generalization ability, enabling robust defect detection for objects of varying sizes. Secondly, we introduce the ECA attention mechanism to improve the model's accuracy in detecting small targets. Under identical experimental conditions, our enhanced YOLOv5s algorithm demonstrates significant improvements, with precision, F1 scores, and mAP values increasing by 3.1 %, 3 %, and 4.5 % respectively. Moreover, the accuracy in detecting crack, damage, slag, and spot defects increases by 0.2 %, 4.7 %, 5.4 %, and 1.9 % respectively. Notably, the detection speed improves from 232 frames/s to 256 frames/s. Comparative analysis with other algorithms reveals superior performance over YOLOv3 and YOLOv4 models, showcasing enhanced capability in identifying small target defects and achieving real-time detection.

3.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000347

RESUMO

Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of 'Yaoxianwuhua'. The results showed that stages 3-4 (June 11-June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size.


Assuntos
Diospyros , Frutas , Regulação da Expressão Gênica de Plantas , Diospyros/genética , Diospyros/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Ethnopharmacol ; : 118595, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038503

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Qinglongyi-Buguzhi herbal pair (QB) is one of commonly used herbal combinations for treating vitiligo in traditional Chinese medicine, consisting of the exocarp of the immature fruit of Juglans regia L. or Juglans mandshurica Maxim., and dried, mature fruit of Psoralea corylifolia L. However, the active components and potential mechanisms of QB in the treatment of vitiligo are still unclear. AIM OF THE STUDY: The purpose of this study is to clarify the effects and mechanisms of QB on vitiligo treatment through integration of network pharmacology and empirical examinations. MATERIALS AND METHODS: The active components and targets of QB as well as the targets linked to vitiligo were obtained from network databases. Visualization networks were constructed with Cytoscape 3.9.1. GO and KEGG enrichment analysis were conducted to investigate the possible mechanism. Molecular docking was employed to evaluate the binding affinities between the primary active ingredients of QB and essential targets of the PI3K/Akt/Nrf2 pathway. In vivo and in vitro experiments were carried out to confirm the results of network pharmacology. RESULTS: We evaluated 44 active compounds and 602 genes from QB, and 107 of these genes linked to vitiligo. GO analysis suggested QB might lessen vitiligo by regulating oxidative stress. KEGG pathway analysis indicated the PI3K/Akt pathway may be crucial for treating vitiligo. Molecular docking results demonstrated the key active ingredients of QB had good binding activity with the major targets in the PI3K/Akt/Nrf2 pathway. In vivo, QB significantly ameliorated vitiligo model mouse's skin pathologies by reducing ROS, elevating CAT and SOD levels. Western blot showed that QB increased the phosphorylation of PI3K and Akt and the expressions of Nrf2 and HO-1 in the skin. In vitro, QB reversed H2O2-induced oxidative injury of melanocytes, enhanced cell survival rate, reduced ROS level, upregulated SOD and CAT activities, and raised the content of melanin. Moreover, QB upregulated the expression levels of Akt, Nrf2, HO-1 mRNA, Akt phosphorylation, HO-1, and nuclear Nrf2 proteins, and also encouraged the nuclear translocation of Nrf2. However, LY294002 treatment significantly reversed the regulatory effect of QB on oxidative damage of melanocytes. CONCLUSIONS: This study revealed that the therapeutic effect of QB on vitiligo was achieved through multiple components, targets and pathways. Experimental investigation demonstrated that QB could improve vitiligo via reducing oxidative stress, which was probably accomplished by activating the PI3K/Akt/Nrf2 signaling pathway.

5.
Cancer Cell Int ; 24(1): 258, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034386

RESUMO

Immune checkpoint blockade therapy targeting the programmed death-1(PD-1) pathway has shown remarkable efficacy and durable response in patients with various cancer types. Early prediction of therapeutic efficacy is important for optimizing treatment plans and avoiding potential side effects. In this work, we developed an efficient machine learning prediction method using routine hematologic and biochemical parameters to predict the efficacy of PD-1 combination treatment in Pan-Cancer patients. A total of 431 patients with nasopharyngeal carcinoma, esophageal cancer and lung cancer who underwent PD-1 checkpoint inhibitor combination therapy were included in this study. Patients were divided into two groups: progressive disease (PD) and disease control (DC) groups. Hematologic and biochemical parameters were collected before and at the third week of PD-1 therapy. Six machine learning models were developed and trained to predict the efficacy of PD-1 combination therapy at 8-12 weeks. Analysis of 57 blood biomarkers before and after three weeks of PD-1 combination therapy through statistical analysis, heatmaps, and principal component analysis did not accurately predict treatment outcome. However, with machine learning models, both the AdaBoost classifier and GBDT demonstrated high levels of prediction efficiency, with clinically acceptable AUC values exceeding 0.7. The AdaBoost classifier exhibited the highest performance among the 6 machine learning models, with a sensitivity of 0.85 and a specificity of 0.79. Our study demonstrated the potential of machine learning to predict the efficacy of PD-1 combination therapy based on changes in hematologic and biochemical parameters.

6.
Adv Sci (Weinh) ; : e2405124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041889

RESUMO

Amid growing interest in the precise detection of volatile organic compounds (VOCs) in industrial field, the demand for highly effective gas sensors is at an all-time high. However, traditional sensors with their classic single-output signal, bulky and complex integrated structure when forming array often involve complicated technology and high cost, limiting their widespread adoption. Here, this study introduces a novel approach, employing an integrated YSZ-based (YSZ: yttria-stabilized zirconia) mixed potential sensor equipped with a triple-sensing electrode array, to efficiently detect and differentiate six types of VOCs gases. This innovative sensor integrates NiSb2O6, CuSb2O6, and MgSb2O6 sensing electrodes (SEs), which are sensitive to pentane, isoprene, n-propanol, acetone, acetic acid, and formaldehyde gases. Through feature engineering based on intuitive spike-based response values, it accentuates the distinct characteristics of every gas. Eventually, an average classification accuracy of 98.8% and an overall R-squared error (R2) of 99.3% for concentration regression toward six target gases can be achieved, showcasing the potential to quantitatively distinguish between industrial hazardous VOCs gases.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39026394

RESUMO

Given the widespread clinical demand, addressing irregular cranial bone defects poses a significant challenge following surgical procedures and traumatic events. In situ-formed injectable hydrogels are attractive for irregular bone defects due to their ease of administration and the ability to incorporate ceramics, ions, and proteins into the hydrogel. In this study, a multifunctional hydrogel composed of oxidized sodium alginate (OSA)-grafted dopamine (DO), carboxymethyl chitosan (CMCS), calcium ions (Ca2+), nanohydroxyapatite (nHA), and magnesium oxide (MgO) (DOCMCHM) was prepared to address irregular cranial bone defects via dynamic Schiff base and chelation reactions. DOCMCHM hydrogel exhibits strong adhesion to wet tissues, self-healing properties, and antibacterial characteristics. Biological evaluations indicate that DOCMCHM hydrogel has good biocompatibility, in vivo degradability, and the ability to promote cell proliferation. Importantly, DOCMCHM hydrogel, containing MgO, promotes the expression of osteogenic protein markers COL-1, OCN, and RUNX2, and stimulates the formation of new blood vessels by upregulating CD31. This study could provide meaningful insights into ion therapy for the repair of cranial bone defects.

8.
Front Immunol ; 15: 1385802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994363

RESUMO

Background: Although numerous studies have reported the association between tertiary lymphoid structures (TLSs) and clinical outcomes in cancer patients treated with immune checkpoint inhibitors (ICIs), there remains a lack of a newer and more comprehensive meta-analysis. The main objective of this study is to explore prognostic biomarkers in immunotherapy-related patients, through analyzing the associations between tertiary lymphoid structures (TLSs) and clinical outcomes in cancer patients treated with ICIs, so as to investigate their prognostic value in cancer patients treated with ICIs. Methods: A comprehensive search was conducted until February 2024 across PubMed, Embase, Web of Science, and the Cochrane Library databases to identify relevant studies evaluating the association between tertiary lymphoid structures and clinical outcomes in cancer patients treated with ICIs. The clinical outcomes were overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). Results: Thirteen studies were incorporated in this meta-analysis, among which nine evaluated the prognostic value of TLSs. The results showed the high levels of TLSs predicted a significantly prolonged OS (pooled HR = 0.35, 95% CI: 0.24-0.53, p < 0.001) and PFS (pooled HR = 0.47, 95% CI: 0.31-0.72, p < 0.001), while lower ORR (pooled OR = 3.78, 95% CI: 2.26-6.33, p < 0.001) in cancer patients treated with ICIs. Conclusion: Our results indicated that high levels of TLSs could predict a favorable prognosis for cancer patients treated with ICIs and have the potential to become a prognostic biomarker of immunotherapy-related patients.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Estruturas Linfoides Terciárias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/imunologia , Estruturas Linfoides Terciárias/imunologia , Prognóstico , Resultado do Tratamento , Biomarcadores Tumorais
9.
Front Cell Infect Microbiol ; 14: 1424669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006747

RESUMO

Cryptocaryon irritans is a highly detrimental parasite in mariculture, causing significant economic losses to the aquaculture industry of Larimichthys crocea. In recent years, copper and copper alloy materials have been used to kill parasites. In this study, the effect of copper plates on the tomont period of C. irritans was explored. The findings indicated that copper plates effectively eradicated tomonts, resulting in a hatching rate of 0. The metabolomic analysis revealed that a total of 2,663 differentially expressed metabolites (1,032 up-regulated and 1,631 down-regulated) were screened in the positive ion mode, and 2,199 differentially expressed metabolites (840 up-regulated and 1,359 down-regulated) were screened in the negative ion mode. L-arginine and L-aspartic acid could be used as potential biomarkers. Copper plate treatment affected 25 metabolic pathways in the tomont, most notably influencing histidine metabolism, retinol metabolism, the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as arginine and proline metabolism. It was shown that high concentrations of copper ions caused a certain degree of disruption to the metabolome of tomonts in C. irritans, thereby impacting their metabolic processes. Consequently, this disturbance ultimately leads to the rapid demise of tomonts upon exposure to copper plates. The metabolomic changes observed in this study elucidate the lethal impact of copper on C. irritans tomonts, providing valuable reference data for the prevention and control of C. irritans in aquaculture.


Assuntos
Cobre , Doenças dos Peixes , Metabolômica , Animais , Cobre/metabolismo , Doenças dos Peixes/parasitologia , Metaboloma , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Redes e Vias Metabólicas , Aquicultura , Arginina/metabolismo
10.
Food Chem ; 459: 140438, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024878

RESUMO

To investigate the structural characteristics of cell wall pectic polysaccharides from wampee, water soluble pectin (WSP), chelator-soluble pectin (CSP) and sodium carbonate-soluble pectin (SSP) were purified. And the inhibitory effects of wampee polyphenol (WPP) on pectinase when these cell wall pectic polysaccharides were used as substrates were also explored. Purified WSP (namely PWSP) had the lowest molecular weight (8.47 × 105 Da) and the highest GalA content (33.43%). While purified CSP (called PCSP) and SSP contained more abundant rhamnogalacturonan I side chains. All of them were low-methoxy pectin (DE < 50%). Enzyme activity and kinetics analysis showed that the inhibition of pectinase by wampee polyphenol was reversible and mixed type. When SSP was used as the substrate, WPP had the strongest inhibition (IC50 = 1.96 ± 0.06 mg/mL) on pectinase. Fluorescence quenching results indicated that WPP inhibited enzyme activity by interacting with substrates and enzymes. Therefore, WPP has the application potential in controlling softening of fruits and vegetables.

11.
Plant Cell Environ ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946254

RESUMO

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

12.
Adv Sci (Weinh) ; : e2404178, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946710

RESUMO

2D transition metal borides (MBenes) with abundant surface terminals hold great promise in molecular sensing applications. However, MBenes from etching with fluorine-containing reagents present inert -fluorine groups on the surface, which hinders their sensing capability. Herein, the multilayer fluorine-free MoBTx MBene (where Tx represents O, OH, and Cl) with hydrophilic structure is prepared by a hydrothermal-assisted hydrochloric acid etching strategy based on guidance from the first-principle calculations. Significantly, the fluorine-free MoBTx-based humidity sensor is fabricated and demonstrates low resistance and excellent humidity performance, achieving a response of 90% to 98%RH and a high resolution of 1%RH at room temperature. By combining the experimental results with the first-principles calculations, the interactions between MoBTx and H2O, including the adsorption and intercalation of H2O, are understood first in depth. Finally, the portable humidity early warning system for real-time monitoring and early warning of infant enuresis and back sweating illustrates its potential for humidity sensing applications. This work not only provides guidance for preparation of fluorine-free MBenes, but also contributes to advancing their exploration in sensing applications.

13.
Ann Hematol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012515

RESUMO

INTRODUCTION: Lymphoma tissue biopsies cannot fully capture genetic features due to accessibility and heterogeneity. We aimed to assess the applicability of circulating tumor DNA (ctDNA) for genomic profiling and disease surveillance in classic Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and diffuse large B-cell lymphoma (DLBCL). METHODS: Tumor tissue and/or liquid biopsies of 49 cHLs, 32 PMBCLs, and 74 DLBCLs were subject to next-generation sequencing targeting 475 genes. The concordance of genetic aberrations in ctDNA and paired tissues was investigated, followed by elevating ctDNA-based mutational landscapes and the correlation between ctDNA dynamics and radiological response/progression. RESULTS: ctDNA exhibited high concordance with tissue samples in cHL (78%), PMBCL (84%), and DLBCL (78%). In cHL, more unique mutations were detected in ctDNA than in tissue biopsies (P < 0.01), with higher variant allele frequencies (P < 0.01). Distinct genomic features in cHL, PMBCL, and DLBCL, including STAT6, SOCS1, BTG2, and PIM1 alterations, could be captured by ctDNA alone. Prevalent PD-L1/PD-L2 amplifications were associated with more concomitant alterations in PMBCL (P < 0.01). Moreover, ctDNA fluctuation could reflect treatment responses and indicate relapse before imaging diagnosis. CONCLUSIONS: Lymphoma genomic profiling by ctDNA was concordant with that by tumor tissues. ctDNA might also be applied in lymphoma surveillance.

14.
Sci Adv ; 10(24): eado4791, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865465

RESUMO

The stemness loss-associated dysregeneration of impaired alveolar type 2 epithelial (AT2) cells abolishes the reversible therapy of idiopathic pulmonary fibrosis (IPF). We here report an inhalable mucus-penetrating lipid nanoparticle (LNP) for codelivering dual mRNAs, promoting realveolarization via restoring AT2 stemness for IPF treatment. Inhalable LNPs were first formulated with dipalmitoylphosphatidylcholine and our in-house-made ionizable lipids for high-efficiency pulmonary mucus penetration and codelivery of dual messenger RNAs (mRNAs), encoding cytochrome b5 reductase 3 and bone morphogenetic protein 4, respectively. After being inhaled in a bleomycin model, LNPs reverses the mitochondrial dysfunction through ameliorating nicotinamide adenine dinucleotide biosynthesis, which inhibits the accelerated senescence of AT2 cells. Concurrently, pathological epithelial remodeling and fibroblast activation induced by impaired AT2 cells are terminated, ultimately prompting alveolar regeneration. Our data demonstrated that the mRNA-LNP system exhibited high protein expression in lung epithelial cells, which markedly extricated the alveolar collapse and prolonged the survival of fibrosis mice, providing a clinically viable strategy against IPF.


Assuntos
Bleomicina , Muco , Nanopartículas , Animais , Nanopartículas/química , Camundongos , Muco/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Modelos Animais de Doenças , Administração por Inalação , Lipídeos/química , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Lipossomos
15.
Imeta ; 3(2): e176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882489

RESUMO

Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.

17.
J Colloid Interface Sci ; 672: 664-674, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865880

RESUMO

Proton exchange membranes (PEMs) applied in fuel cell technology suffer from the trade-off between fast proton conduction and durable operation involving dimensional stability, mechanical strength, and oxidative resistance. To address this issue, a novel branched polybenzimidazole (brPBI) was synthesized, covalently cross-linked with (3-chloropropyl)triethoxysilane (CTS), and doped with a novel proton conductor FeATMP to prepare brPBI-CTS/FeATMP membranes. The branching degree of brPBI was optimized to achieve high molecular weight while the branching structure offered high free volume, abundant end-groups, and self-cross-linking moiety that enhanced proton conduction and dimensional/mechanical/oxidative stability. Covalent cross-linking with CTS enhanced the dimensional, mechanical, and oxidative stability while improving the water-assisted proton conduction owing to the hydrophilic nature of siloxane structure formed. At 180 ℃, the proton conductivity of the brPBI3-CTS/FeATMP composite membrane reached 0.136, 0.073, and 0.041 S cm-1 at 100 % RH, 50 % RH, and 0 % RH, respectively, while its swelling ratio after immersion in water at 90 ℃ for 24 h was 4.69 %. The performance of the membranes demonstrated that construction of hydrophilic structure by covalent cross-linking was a successful strategy to break the trade-off effect for PEMs.

18.
Neurosurgery ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904404

RESUMO

BACKGROUND AND OBJECTIVES: Advanced diffusion-weighted MRI (DWI) modeling, such as diffusion tensor imaging (DTI) and diffusion basis spectrum imaging (DBSI), may help guide rehabilitation strategies after surgical decompression for cervical spondylotic myelopathy (CSM). Currently, however, postoperative DWI is difficult to interpret, owing to signal distortions from spinal instrumentation. Therefore, we examined the relationship between postoperative DTI/DBSI-extracted from the rostral C3 spinal level-and clinical outcome measures at 2-year follow-up after decompressive surgery for CSM. METHODS: Fifty patients with CSM underwent complete clinical and DWI evaluation-followed by DTI/DBSI analysis-at baseline and 2-year follow-up. Clinical outcomes included the modified Japanese Orthopedic Association score and comprehensive patient-reported outcomes. DTI metrics included apparent diffusion coefficient, fractional anisotropy, axial diffusivity, and radial diffusivity. DBSI metrics evaluated white matter tracts through fractional anisotropy, fiber fraction, axial diffusivity, and radial diffusivity as well as extra-axonal pathology through restricted and nonrestricted fraction. Cross-sectional Spearman's correlations were used to compare postoperative DTI/DBSI metrics with clinical outcomes. RESULTS: Twenty-seven patients with CSM, including 15, 7, and 5 with mild, moderate, and severe disease, respectively, possessed complete baseline and postoperative DWI scans. At 2-year follow-up, there were 10 significant correlations among postoperative DBSI metrics and postoperative clinical outcomes compared with 3 among postoperative DTI metrics. Of the 13 significant correlations, 7 involved the neck disability index (NDI). The strongest relationships were between DBSI axial diffusivity and NDI (r = 0.60, P < .001), DBSI fiber fraction and NDI (rs = -0.58, P < .001), and DBSI restricted fraction and NDI (rs = 0.56, P < .001). The weakest correlation was between DTI apparent diffusion coefficient and NDI (r = 0.35, P = .02). CONCLUSION: Quantitative measures of spinal cord microstructure after surgery correlate with postoperative neurofunctional status, quality of life, and pain/disability at 2 years after decompressive surgery for CSM. In particular, DBSI metrics may serve as meaningful biomarkers for postoperative disease severity for patients with CSM.

19.
Sci Rep ; 14(1): 14114, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898142

RESUMO

The aim of this study was to develop a simple but effective nomogram to predict risk of septic cardiomyopathy (SCM) in the intensive care unit (ICU). We analyzed data from patients who were first admitted to the ICU for sepsis between 2008 and 2019 in the MIMIC-IV database, with no history of heart disease, and divided them into a training cohort and an internal validation cohort at a 7:3 ratio. SCM is defined as sepsis diagnosed in the absence of other cardiac diseases, with echocardiographic evidence of left (or right) ventricular systolic or diastolic dysfunction and a left ventricular ejection fraction (LVEF) of less than 50%. Variables were selected from the training cohort using the Least Absolute Shrinkage and Selection Operator (LASSO) regression to develop an early predictive model for septic cardiomyopathy. A nomogram was constructed using logistic regression analysis and its receiver operating characteristic (ROC) and calibration were evaluated in two cohorts. A total of 1562 patients participated in this study, with 1094 in the training cohort and 468 in the internal validation cohort. SCM occurred in 13.4% (147 individuals) in the training cohort, 16.0% (75 individuals) in the internal validation cohort. After adjusting for various confounding factors, we constructed a nomogram that includes SAPS II, Troponin T, CK-MB index, white blood cell count, and presence of atrial fibrillation. The area under the curve (AUC) for the training cohort was 0.804 (95% CI 0.764-0.844), and the Hosmer-Lemeshow test showed good calibration of the nomogram (P = 0.288). Our nomogram also exhibited good discriminative ability and calibration in the internal validation cohort. Our nomogram demonstrated good potential in identifying patients at increased risk of SCM in the ICU.


Assuntos
Cardiomiopatias , Unidades de Terapia Intensiva , Nomogramas , Sepse , Humanos , Masculino , Feminino , Cardiomiopatias/diagnóstico , Pessoa de Meia-Idade , Sepse/diagnóstico , Idoso , Curva ROC , Fatores de Risco , Medição de Risco/métodos
20.
Cell Death Dis ; 15(6): 423, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890304

RESUMO

Mitochondria play a crucial role in the progression of nasopharyngeal carcinoma (NPC). YME1L, a member of the AAA ATPase family, is a key regulator of mitochondrial function and has been implicated in various cellular processes and diseases. This study investigates the expression and functional significance of YME1L in NPC. YME1L exhibits significant upregulation in NPC tissues from patients and across various primary human NPC cells, while its expression remains relatively low in adjacent normal tissues and primary nasal epithelial cells. Employing genetic silencing through the shRNA strategy or knockout (KO) via the CRISPR-sgRNA method, we demonstrated that YME1L depletion disrupted mitochondrial function, leading to mitochondrial depolarization, reactive oxygen species (ROS) generation, lipid peroxidation, and ATP reduction within primary NPC cells. Additionally, YME1L silencing or KO substantially impeded cell viability, proliferation, cell cycle progression, and migratory capabilities, concomitant with an augmentation of Caspase-apoptosis activation in primary NPC cells. Conversely, ectopic YME1L expression conferred pro-tumorigenic attributes, enhancing ATP production and bolstering NPC cell proliferation and migration. Moreover, our findings illuminate the pivotal role of YME1L in Akt-mTOR activation within NPC cells, with Akt-S6K phosphorylation exhibiting a significant decline upon YME1L depletion but enhancement upon YME1L overexpression. In YME1L-silenced primary NPC cells, the introduction of a constitutively-active Akt1 mutant (caAkt1, at S473D) restored Akt-S6K phosphorylation, effectively ameliorating the inhibitory effects imposed by YME1L shRNA. In vivo studies revealed that intratumoral administration of YME1L-shRNA-expressing adeno-associated virus (AAV) curtailed subcutaneous NPC xenograft growth in nude mice. Furthermore, YME1L downregulation, concurrent with mitochondrial dysfunction and ATP reduction, oxidative injury, Akt-mTOR inactivation, and apoptosis induction were evident within YME1L-silenced NPC xenograft tissues. Collectively, these findings shed light on the notable pro-tumorigenic role by overexpressed YME1L in NPC, with a plausible mechanism involving the promotion of Akt-mTOR activation.


Assuntos
Proliferação de Células , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Animais , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Linhagem Celular Tumoral , Camundongos , Mitocôndrias/metabolismo , Apoptose/genética , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Serina-Treonina Quinases TOR/metabolismo , Masculino , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Feminino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA