Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.157
Filtrar
1.
J Am Soc Nephrol ; 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919106

RESUMO

BACKGROUND: Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS: We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS: We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS: Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.

2.
Exp Cell Res ; : 111820, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31923427

RESUMO

Butyrate-induced autophagy and anti-inflammatory effects of IECs plays an important role in UC. HSP has been proved to be associated with autophagy. HSF2, as an important regulator of HSP, has been determined to be highly expressed in UC. This study was designed to elucidate the relationship between HSF2, butyrate and epithelial autophagy and the potential mechanism of HSF2-related autophagy in UC. The autophagy levels and HSF2 expression in intestinal mucosa were increased in UC patients compared to controls. In DSS colitis models, hsf2-/- mice exhibited more severe intestinal inflammation and lower autophagy levels than wild-type mice. HSF2 expression could be induced by sodium butyrate and LPS as a dose-response relationship in HT-29 cells, epigenetically via increasing histone acetylation levels at the promoter region by sodium butyrate. Autophagy induced by sodium butyrate was promoted by overexpression HSF2 in HT-29 cells. Moreover, overexpression HSF2 decreased the expression and phosphorylation levels of PI3K, Akt and mTOR induced by sodium butyrate. HSF2 might induced by sodium butyrate and inflammation and played protective roles in UC by enhancing autophagy of IECs. This indicated that HSF2 may be a critical target for autophagy modulation and a new potential therapeutic target in UC.

3.
Trials ; 21(1): 48, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915046

RESUMO

BACKGROUND: No treatment has convincingly been proven to be beneficial for microvascular obstruction (MVO) in patients with ST-elevation myocardial infarction (STEMI). Several studies have described the effects of Danhong Injection. However, evidence of a rigorously designed verification study is still lacking, and the intervention timing of Danhong Injection is uncertain. METHODS: The DIRECTION study is a multicenter, prospective, randomized, evaluator-blind study. A total of 336 patients with STEMI receiving percutaneous coronary intervention (PCI) will be randomly assigned to conventional treatment, the preoperative Danhong Injection, or the postoperative Danhong Injection. The primary outcome is rate of ST-segment resolution (STR) ≥ 70% at 90 min after PCI. The secondary outcomes are the degree of STR, Thrombolysis in Myocardial Infarction (TIMI) flow grade, TIMI myocardial perfusion grade, left ventricular ejection fraction, N-terminal prohormone brain natriuretic peptide, high-sensitivity C-reactive protein, and infarct size expressed as area under the curve for cardiac troponin I (cTnI) and for creatine kinase MB. The major adverse cardiovascular events and hospital readmission events will be recorded. Health quality will be assessed with the 12-item Short Form Health Survey. The safety outcomes include bleeding events, adverse events, and abnormal changes in routine blood tests. Psychological status and dietary patterns will be evaluated using Hamilton Depression Rating Scale and Food Frequency Questionnaire as the relevant indicators. DISCUSSION: This trial will evaluate the efficacy and safety of Danhong Injection, as well as its optimal timing of intervention to prevent MVO in patients with STEMI. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900021440. Registered on February 21, 2019.

4.
Ecotoxicol Environ Saf ; 190: 110096, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901813

RESUMO

Microcystins-LR (MC-LR), a cyanobacterial toxins, initiate apoptosis in normal and tumor cells. Nitric oxide produced by iNOS is necessary for MC-LR-induced apoptosis. However, the underlying mechanism of NO mediated MC-LR cytotoxicity remains unclear. Here, we performed in vitro experiments on MC-LR cytotoxicity associated with NO induced S-nitrosyation of GAPDH in human colon cancer cells SW480. MTT assay indicated that MC-LR decreased the cellular viability by high concentration (>1 µM). Flow cytometer assay revealed that apoptosis was core mode for MC-LR cytotoxicity. Griess assay showed that MC-LR exposure increased the release of NO through the function of NOS1 and NOS2 in SW480 cells. In turn, NO stress induced the S-nitrosylated modification of GAPDH leading to its nuclear translocation following Siah1 binding. CHIP assay showed that the nuclear GADPH increased P53 transcript of a panner of apoptosis related genes. Moreover, apoptosis induced by MC-LR could be reduced by GAPDH or si-Siah1 or NOSs inhibitor, L-NAME. Thus, our study verified a molecular mechanism of NO/GAPDH/Siah1 cascade in MC-LR mediated apoptosis in colorectal cancer cells, providing a further understanding the in vitro molecular mechanism of MC-LR colorectal toxicity.

5.
Carbohydr Polym ; 230: 115726, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887919

RESUMO

The study tried to investigate whether apple polysaccharide (AP) could prevent colitis associated colorectal cancer (CACC) through the regulation of intestinal microbiota disorders. 10 % AP (w/v) was administrated to ICR mice by gavage for 15 wk. It was found that AP treatment protected against CACC in mice effectively. The level of Lactobacillus in the intestine of AOM/DSS-treated mice was significantly decreased and that of Fusobacterium increased; while AP could reverse this trend and increase the intestinal microbiota diversity. The number of T cells and macrophages in the colon tissue of mice in AOM/DSS group elevated; while AP could reduce the number of these cells significantly. AP suppressed nuclear aggregation of ß-catenin, inhibited the activation of Wnt pathway in colon tissues. These data suggest that AP prevented ICR mice from CACC at least in part through regulating intestinal flora disorder and Wnt pathway.

6.
Aesthetic Plast Surg ; 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31834523

RESUMO

BACKGROUND: The most challenging part of rhinoplasty is nasal tip management. For East Asian patients with a bulbous under projected nasal tip with thick skin, autologous cartilage is considered the gold-standard graft material to provide strong support to the nasal tip and effectively increase tip projection. The present study aimed to evaluate the outcomes of closed rhinoplasty with a mushroom-shaped costal cartilage graft in East Asian patients. METHODS: From February 2018 to May 2019, 52 patients underwent rhinoplasty with a mushroom-shaped costal cartilage graft in our institution. Rhinoplasty was performed through a bilateral endonasal incision. Postoperatively, all patients were photographed and asked to complete a satisfaction survey online or by telephone. RESULTS: The mean follow-up period was 15.8 months (range 12-21 months). Twenty-four of 52 patients agreed to participate in this study. Postoperatively, the mean nasofrontal angle was 137.7 ± 3.7°, mean nasolabial angle was 94.1 ± 6.2°, mean nasal tip angle was 79.4 ± 5.2°, and mean columellar/lobular angle was 44.7 ± 2.4°. The mean tip projection/nasal length index was 0.53 ± 0.07, and the mean columellar/lobular length index was 1.21 ± 0.22. There were no prolonged functional complications. Most patients (23/24; 95.8%) were satisfied with the aesthetic results. CONCLUSION: The present results suggest that the mushroom-shaped costal cartilage graft in closed rhinoplasty is a good choice for the correction of a bulbous under projected nasal tip. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

7.
Pharmacol Res ; : 104595, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31838080

RESUMO

Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a major phosphatase involved in several cellular processes. In recent years, SHP2 has been the focus of significant attention in human diseases, particular in cancer. Several studies have shown that SHP2 plays an important role in regulating immune cell functions in tumor microenvironment. A few clinical trials conducted using SHP2 allosteric inhibitors have shown remarkable anti-tumor benefits and good safety profiles. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in T lymphocytes, macrophages and cancer cells. It also summarizes the current development of SHP2 inhibitors as a promising strategy for cancer immunotherapy.

8.
Database (Oxford) ; 20192019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819989

RESUMO

Therapeutic vaccines represent a promising immunotherapeutic modality against cancer. Discovery and validation of antigens is the key to develop effective anti-cancer vaccines. Neoantigens, arising from somatic mutations in individual cancers, are considered as ideal cancer vaccine targets because of their immunogenicity and lack of expression in normal tissues. However, only few databases support convenient access to these neoantigens for use in vaccines. To address this gap, we developed a web-accessible database, called NeoPeptide, which contains most of the important characteristics of neoantigens (such as mutation site, subunit sequence, major histocompatibility complex restriction) derived from published literature and other immunological resources. NeoPeptide also provides links to resources for further characterization of the novel features of these neoantigens. NeoPeptide will be regularly updated with newly identified and published neoantigens. Our work will help researchers in identifying neoantigens in different cancers and hasten the search for appropriate cancer vaccine candidates.

9.
Nano Lett ; 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31825628

RESUMO

Silicon has a great potential as an alternative to graphite which is currently used commercially as an anode material in lithium-ion batteries (LIBs) because of its exceptional capacity and reasonable working potential. Herein, a low-cost and scalable approach is proposed for the production of high-performance silicon-carbon (Si-C) hybrid composite anodes for high-energy LIBs. The Si-C composite material is synthesized using a scalable micro-emulsion method by selecting silicon nanoparticles, using low-cost corn-starch as a biomass precursor, and finally conducting heat treatment under C3H6 gas. This produces a unique nano/micro structured Si-C hybrid composite comprised of silicon nanoparticles embedded in micron-sized amorphous carbon balls derived from corn-starch that is capsuled by thin graphitic carbon layer. Such a dual carbon matrix tightly surrounds the silicon nanoparticles that provides high electronic conductivity and significantly decreases the absolute stress/strain of the material during multiple lithiation-delithiation processes. The Si-C hybrid composite anode demonstrates a high capacity of 1800 mAh g-1, outstanding cycling stability with capacity retention of 80% over 500 cycles, and fast charge-discharge capability of 12 min. Moreover, the Si-C composite anode exhibits good acceptability in practical LIBs assembled with commercial Li[Ni0.6Co0.2Mn0.2]O2 and Li[Ni0.80Co0.15Al0.05]O2 cathodes.

10.
Nat Commun ; 10(1): 5649, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827082

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.

11.
J Vis Exp ; (153)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31789319

RESUMO

Elevated intraocular pressure (IOP) is a well-documented risk factor for glaucoma. Here we describe a novel, effective method for consistently inducing stable IOP elevation in mice that mimics the post-operative complication of using silicone oil (SO) as a tamponade agent in human vitreoretinal surgery. In this protocol, SO is injected into the anterior chamber of the mouse eye to block the pupil and prevent inflow of aqueous humor. The posterior chamber accumulates aqueous humor and this in turn increases the IOP of the posterior segment. A single SO injection produces reliable, sufficient, and stable IOP elevation, which induces significant glaucomatous neurodegeneration. This model is a true replicate of secondary glaucoma in the eye clinic. To further mimic the clinical setting, SO can be removed from the anterior chamber to reopen the drainage pathway and allow inflow of aqueous humor, which is drained through the trabecular meshwork (TM) at the angle of the anterior chamber. Because IOP quickly returns to normal, the model can be used to test the effect of lowering IOP on glaucomatous retinal ganglion cells. This method is straightforward, does not require special equipment or repeat procedures, closely simulates clinical situations, and may be applicable to diverse animal species. However, minor modifications may be required.

12.
Sci Technol Adv Mater ; 20(1): 1090-1102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807220

RESUMO

The TPP-2M formula is the most popular empirical formula for the estimation of the electron inelastic mean free paths (IMFPs) in solids from several simple material parameters. The TPP-2M formula, however, poorly describes several materials because it relies heavily on the traditional least-squares analysis. Herein, we propose a new framework based on machine learning to overcome the weakness. This framework allows a selection from an enormous number of combined terms (descriptors) to build a new formula that describes the electron IMFPs. The resulting framework not only provides higher average accuracy and stability but also reveals the physics meanings of several newly found descriptors. Using the identified principle descriptors, a complete physics picture of electron IMFPs is obtained, including both single and collective electron behaviors of inelastic scattering. Our findings suggest that machine learning is robust and efficient to predict the IMFP and has great potential in building a regression framework for data-driven problems. Furthermore, this method could be applicable to find empirical formula for given experimental data using a series of parameters given a priori, holds potential to find a deeper connection between experimental data and a priori parameters.

14.
Biomater Sci ; 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31808470

RESUMO

Hypoxic resistance, photosensitizer toxicity, and target deficiency are major challenges strongly inhibiting the efficacy of clinical photodynamic therapy (PDT) in tumor treatment. To overcome these challenges, we synthesized IR780 and catalase co-loaded liposomes to form a tumor-targeted bio-nanoreactor (LIP-IR-CAT). The efficient strategy can solve the physicochemical problems including strong hydrophobicity, poor light stability, poor tolerance, and high toxicity in vivo of IR780 as a photosensitizer and promote the clinical application of IR780. Taking advantage of the high catalytic efficiency of catalase when it meets hydrogen peroxide (H2O2), continuous oxygen can be generated due to the abnormally elevated level of H2O2 within the tumor, thus remarkably promoting tumor oxygenation. With the conjunction of photosensitivity and specific mitochondria-targeting ability of IR780, the intratumoral reactive oxygen species (ROS) are strongly enhanced, and adenosine triphosphate (ATP) is reduced under near-infrared (NIR) laser irradiation. Following a single-dose intravenous injection of LIP-IR-CAT, tumor hypoxia can be seriously attenuated, at the same time creating an opportunity to enhance the efficacy of PDT on the tumor. Our in vivo data show that the nanoreactor LIP-IR-CAT, in combination with just two short time NIR laser irradiation sessions, can effectively inhibit the growth of solid tumors without systemic toxicity.

15.
Exp Neurol ; : 113142, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31812555

RESUMO

BACKGROUND AND PURPOSE: A major gap in the field of ischemic preconditioning (IPC) is whether or not long-lasting neuroprotection can be achieved. Moreover, the specific mechanisms underlying IPC and how they can be translated into the clinic remain uncertain. To fill these gaps, we tested the hypothesis that IPC exerts long-lasting structural and functional neuroprotection against ischemic stroke through the master gatekeeper of antioxidant defenses, nuclear factor erythroid 2-related factor 2 (Nrf2). We also tested whether the brain could be pharmaceutically preconditioned with a potent and blood-brain barrier-permeable Nrf2 activator, 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-trifluoethyl amide (CDDO-TFEA). METHODS: IPC was induced by transient middle cerebral artery occlusion (MCAO) for 12 min, and ischemic stroke was generated by MCAO for 60 min in wild-type (WT) or Nrf2 knockout (KO) mice. Sensorimotor function, learning/memory skills, and brain tissue loss were measured up to 35 days after stroke. Primary rodent cortical neurons from wildtype (WT) and Nrf2 KO mice were subjected to lethal oxygen-glucose deprivation (OGD) or a brief OGD episode as a preconditioning (PC) stimulus before OGD. Cell viability/death, lipid electrophile generation, and Nrf2 activation were measured. CDDO-TFEA or its vehicle was administered in vivo for three consecutive days before MCAO. Tissue loss and neurological tests were performed 35 days after stroke. RESULTS: IPC significantly reduced sensorimotor deficits, post-stroke cognitive impairments, and brain tissue loss, 35 days after MCAO in WT mice. These enduring protective effects of IPC were inhibited in Nrf2 KO mice. In neuronal cultures, PC also endowed primary neurons with ischemic tolerance against OGD-induced cell death, an effect that was abolished by loss of Nrf2 expression in KO neurons. PC induced the generation of low levels of lipid electrophiles and led to activation of the Nrf2 pathway. The mechanism underlying IPC may be translatable, as exogenous administration of the Nrf2 activator CDDO-TFEA significantly reduced neurological dysfunction and ischemic brain damage after MCAO. CONCLUSIONS: IPC provides long-lasting neuroprotection against ischemic brain injury and post-stroke cognitive dysfunction. Nrf2 activation plays a key role in this beneficial outcome and is a promising therapeutic target for the attenuation of ischemic brain injury.

16.
Int J Biol Macromol ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31812748

RESUMO

The purpose of this study was to evaluate the effect of plasticizer type (glycerol, PEG-400, and sorbitol) and concentration (0%, 15%, 30% and 45%, w/w dry polymer weight) on rheological and physico-mechanical and structural properties of chitosan/zein blend film. Based on the analysis of rheological properties of chitosan/zein film-forming solutions, all film-forming solutions exhibited non-Newtonian behavior. The flow index of film-forming solution increased and apparent viscosity decreased with the increase of plasticizer concentration. The storage modulus (G') and the loss modulus (G″) decreased when plasticizer was added. The permeability of films increased significantly with the increase of plasticizer concentration, but the C/Z-P film (plasticized chitosan/zein film with PEG-400) had better barrier performance compared with the other two. The C/Z-P film had better mechanical properties and light transmission. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed chitosan and zein had good compatibility due to the addition of the plasticizer, and crystallinity decreased with the increase of plasticizer concentration.

17.
Cell Death Dis ; 10(12): 957, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862870

RESUMO

Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy, whereas no effective interventions are available. Andrographolide, an active component extracted from Andrographis paniculate, is prescribed as a treatment for upper respiratory tract infection. Here we report the potential radioprotective effect and mechanism of Andrographolide on RILI. C57BL/6 mice were exposed to 18 Gy of whole thorax irradiation, followed by intraperitoneal injection of Andrographolide every other day for 4 weeks. Andrographolide significantly ameliorated radiation-induced lung tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine release in the early phase and progressive fibrosis in the late phase. Moreover, Andrographolide markedly hampered radiation-induced activation of the AIM2 inflammasome and pyroptosis in vivo. Furthermore, bone marrow-derived macrophages (BMDMs) were exposed to 8 Gy of X-ray radiation in vitro and Andrographolide significantly inhibited AIM2 inflammasome mediated-pyroptosis in BMDMs. Mechanistically, Andrographolide effectively prevented AIM2 from translocating into the nucleus to sense DNA damage induced by radiation or chemotherapeutic agents in BMDMs. Taken together, Andrographolide ameliorates RILI by suppressing AIM2 inflammasome mediated-pyroptosis in macrophage, identifying Andrographolide as a novel potential protective agent for RILI.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31853723

RESUMO

Skeletal muscles are always embedded in sheets of connective tissues, which influences muscle biomechanics by shaping the fascicle geometry and encapsulating muscular mass flow. However, existing Hill-type muscle models typically take surrounding tissues into account as a nonlinear spring, without consideration of the muscle geometry and inertia. In this paper, a new muscle model is proposed to simultaneously account for soft tissue constraints on the muscle's shape together with mass flow during stretch. To accomplish this, a mass-variable cable element of the muscle-tendon unit, with parameterization of its geometrical influence on the force-producing capability, is newly formulated based on an arbitrary Lagrangian-Eulerian description. Also, sliding joints are presented to further constrain possible mass flow of the elements via epimuscular soft tissue connections between adjacent muscle bellies. Available experimental data from cat soleus and rat gastrocnemius medialis muscles validates the proposed method. For further verification, a planar model of the triceps surae is developed by integration of this modeling framework, and subject-specific simulations of the passive ankle dynamometry tests are performed and correlated with sonoelastographic evaluations of two male participants. The results confirm that the flow of the muscle mass can alternate its force-generating behaviors, and the established model provides an accurate prediction of muscle behavior under transverse loading. The proposed muscle element could be integrated with larger musculoskeletal models to better investigate biomechanical functions of muscles during locomotion, such as heel impact or vibration responses of the spine, when dynamic effects are substantial.

19.
AJR Am J Roentgenol ; : 1-9, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31887095

RESUMO

OBJECTIVE. The purpose of this study was to apply a new method for quantitatively assessing atrophied muscles by use of sonoelastography. SUBJECTS AND METHODS. B-mode sonography and shear-wave elastography of the gastrocnemius muscle (GM) were performed on 12 patients and 32 healthy control volunteers during passive stretching induced by ankle rotation from 40° plantar flexion to 30° dorsiflexion. The GM length and corresponding elastic moduli were measured consecutively per frame. The elastic modulus-length curve was created by plotting the elastic modulus against the GM length during passive stretching. Three physiologically significant parameters-slack elasticity modulus (E0), slack length (l0), and passive elastic coefficient (k)-were estimated from the measured elasticity modulus-length curve to quantify the elastic properties of the GM. RESULTS. All results showed a smooth exponential curve. In the state of relaxation, atrophied GM was softer than GM of healthy control subjects. However, when the muscles were passively stretched from a state of slack to tension, k was significantly greater for the patients with atrophied GMs than for the control subjects. Furthermore, the diagnostic accuracy of k for muscle atrophy was greater than that of E0. CONCLUSION. Increased elastic stiffness may be considered a positive finding for the characterization of muscle atrophy. Because of its high diagnostic accuracy and reproducibility, the elastic modulus-length curve can provide new insights into the diagnosis of muscle disease and allows monitoring of muscle function in rehabilitation.

20.
Neuroimmunomodulation ; 26(5): 239-249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707396

RESUMO

OBJECTIVES: As a complication of diabetes mellitus (DM), one of the leading causes for death and disability for DM patients is diabetic foot ulcers (DFUs). Epithelial to mesenchymal transition (EMT) plays a critical role in wound healing of DFUs. miR-203 is specifically enriched in keratinocytes and has been shown to target interleukin 8 (IL-8), which acts as an activator for the EMT process. In this study, we explored the interaction between miR-203 and IL-8 in DFU rat models and human keratinocyte cells, underlying the mechanism of miR-203's function in DFUs progression. METHODS: DFU rat models were used to test gene expression in DFU progression. Diabetic keratinocyte cell lines were used to validate in vitro. Wound healing and Transwell assays were applied to evaluate cell migration and invasion abilities. The EMT process was estimated by testing expression of E-cadherin, Vimentin and Slug. The interaction between miR-203 and IL-8 was determined by Luciferase assay. RESULTS: Our results demonstrated that the wound-healing process had been slowed in DFUs, and the advanced glycation end products (AGEs) and the receptor for advanced glycation end products (RAGEs) in wound tissue were of a higher expression than those in normal rat. miR-203 was increased in skin tissues from DFU rat models, while IL-8 was decreased. Through knock-down of miR-203 in AGE-treated keratinocyte cells, it had been shown that the downregulation of miR-203 could promote cell proliferation and migration, and facilitate the EMT process. Meanwhile, Luciferase assay proved that miR-203 could directly target and inhibit IL-8. The repression of IL-8 could rescue the outcomes brought about by miR-203 inhibition. CONCLUSIONS: The upregulation of miR-203 in DFU tissues impaired wound healing by the repress EMT process. Specific knock-down of miR-203 could promote wound healing through the reactivation of its target gene IL-8 and the downstream IL-8/AKT pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA