Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747869

RESUMO

The gut microbiome is increasingly recognized to alter cancer risk, progression, and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonization by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing, and tumor burden by periodic tumor measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced tumor burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.

2.
PLoS One ; 17(11): e0277284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374931

RESUMO

Numerous single gene mutations identified in humans and mice result in nail deformities with many similarities between the species. A spontaneous, autosomal, recessive mutation called witch nails (whnl) is described here where the distal nail matrix and nail bed undergo degenerative changes resulting in formation of an abnormal nail plate causing mice to develop long, curved nails. This mutation arose spontaneously in a colony of MRL/MpJ-Faslpr/J at The Jackson Laboratory. Homozygous mutant mice are recognizable by 8 weeks of age by their long, curved nails. The whnl mutation, mapped on Chromosome 15, is due to a 7-bp insertion identified in the 3' region of exon 9 in the Krt90 gene (formerly Riken cDNA 4732456N10Rik), and is predicted to result in a frameshift that changes serine 476 to arginine and subsequently introduces 36 novel amino acids into the protein before a premature stop codon (p. Ser476ArgfsTer36). By immunohistochemistry the normal KRT90 protein is expressed in the nail matrix and nail bed in control mice where lesions are located in mutant mice. Immunoreactivity toward equine KRT124, the ortholog of mouse KRT90, is restricted to the hoof lamellae (equine hoof wall and lamellae are homologous to the mouse nail plate and nail bed) and the mouse nail bed. Equine laminitis lesions are similar to those observed in this mutant mouse suggesting that the latter may be a useful model for hoof and nail diseases. This first spontaneous mouse mutation affecting the novel Krt90 gene provides new insight into the normal regulation of the molecular pathways of nail development.


Assuntos
Doenças da Unha , Unhas Malformadas , Animais , Camundongos , Crescimento e Desenvolvimento , Cavalos , Mutação , Doenças da Unha/genética , Unhas/química , Unhas Malformadas/genética
3.
Vet Pathol ; 59(6): 1047-1055, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36062914

RESUMO

Brain and spinal cord histopathology findings in male and female 20-month-old mice in a large-scale aging study of 28 inbred Jackson Laboratory mouse strains from 7 genetic families are described. Brain sections from selected strains at 12 and 24 months of age or older were also reviewed. Common lesions include axonal dystrophy in the gracile and/or cuneate nucleus in the sensory tract of the dorsal medulla and in the spinal cord in all strains. Hirano-like bodies were seen in 24/28 strains, and mineralization was observed in the thalamus of 9/28 strains. Less common lesions were also seen in the cerebellum, cerebral cortex, and other brain areas. No brain or spinal cord tumors were found. Evidence of an impairment of the ubiquitin-proteasome system (UPS) and/or suspected autophagy was manifested as medullary axonal dystrophy with intra-axonal granular eosinophilic bodies and LC3B immunohistochemistry in most strains. RIIIS/J, the most severely affected strain, showed moderate axonal dystrophy at 12 months, which progressed to severe lesions at 20 months. Comparative pathology in various species is discussed.


Assuntos
Complexo de Endopeptidases do Proteassoma , Medula Espinal , Envelhecimento , Animais , Feminino , Masculino , Bulbo/patologia , Camundongos , Camundongos Endogâmicos , Medula Espinal/patologia , Ubiquitinas
4.
Mol Genet Genomics ; 297(1): 147-154, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34878611

RESUMO

Investigations of hereditary phenotypes in spontaneous mutants may help to better understand the physiological functions of the altered genes. We investigated two unrelated domestic shorthair cats with bulbous swellings of the hair shafts. The clinical, histopathological, and ultrastructural features were similar to those in mice with lanceolate hair phenotype caused by loss-of-function variants in Dsg4 encoding desmoglein 4. We sequenced the genomes from both affected cats and compared the data of each affected cat to 61 control genomes. A search for private homozygous variants in the DSG4 candidate gene revealed independent frameshift variants in each case, c.76del or p.Ile26fsLeu*4 in case no. 1 and c.1777del or p.His593Thrfs*23 in case no. 2. DSG4 is a transmembrane glycoprotein located primarily in the extracellular part of desmosomes, a complex of adhesion molecules responsible for connecting the keratin intermediate filaments of neighbouring epithelial cells. Desmosomes are essential for normal hair shaft formation. Both identified DSG4 variants in the affected cats lead to premature stop codons and truncate major parts of the open-reading frame. We assume that this leads to a complete loss of DSG4 function, resulting in an incorrect formation of the desmosomes and causing the development of defective hair shafts. Together with the knowledge on the effects of DSG4 variants in other species, our data suggest that the identified DSG4 variants cause the hair shaft dystrophy. To the best of our knowledge, this study represents the first report of pathogenic DSG4 variants in domestic animals.


Assuntos
Doenças do Gato/genética , Desmogleínas/genética , Doenças do Cabelo/genética , Alopecia/genética , Alopecia/patologia , Alopecia/veterinária , Pelo Animal/patologia , Animais , Sequência de Bases , Estudos de Casos e Controles , Doenças do Gato/patologia , Gatos/genética , Códon sem Sentido , Mutação da Fase de Leitura , Doenças do Cabelo/patologia , Doenças do Cabelo/veterinária , Folículo Piloso/patologia , Homozigoto , Pele/patologia , Sequenciamento Completo do Genoma
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34887354

RESUMO

SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld-/- mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld-/- cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.


Assuntos
Enzima Desubiquitinante CYLD/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Morte Celular , Enzima Desubiquitinante CYLD/genética , Embrião de Mamíferos/citologia , Feminino , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Células Mieloides , Fosforilação , Dermatopatias , Ubiquitinação
6.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33734376

RESUMO

The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.


Assuntos
Prolina/biossíntese , Pirrolina Carboxilato Redutases/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Prolina/química , Prolina/genética , Pirrolina Carboxilato Redutases/metabolismo
7.
Front Cell Dev Biol ; 9: 571474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614636

RESUMO

Hair follicles cycle through periods of growth (anagen), regression (catagen), rest (telogen), and release (exogen). Telogen is further divided into refractory and competent telogen based on expression of bone morphogenetic protein 4 (BMP4) and wingless-related MMTV integration site 7A (WNT7A). During refractory telogen hair follicle stem cells (HFSC) are inhibited. Retinoic acid synthesis proteins localized to the hair follicle and this localization pattern changed throughout the hair cycle. In addition, excess retinyl esters arrested hair follicles in telogen. The purpose of this study was to further define these hair cycle changes. BMP4 and WNT7A expression was also used to distinguish refractory from competent telogen in C57BL/6J mice fed different levels of retinyl esters from two previous studies. These two studies produced opposite results; and differed in the amount of retinyl esters the dams consumed and the age of the mice when the different diet began. There were a greater percentage of hair follicles in refractory telogen both when mice were bred on an unpurified diet containing copious levels of retinyl esters (study 1) and consumed excess levels of retinyl esters starting at 12 weeks of age, as well as when mice were bred on a purified diet containing adequate levels of retinyl esters (study 2) and remained on this diet at 6 weeks of age. WNT7A expression was consistent with these results. Next, the localization of vitamin A metabolism proteins in the two stages of telogen was examined. Keratin 6 (KRT6) and cellular retinoic acid binding protein 2 (CRABP2) localized almost exclusively to refractory telogen hair follicles in study 1. However, KRT6 and CRABP2 localized to both competent and refractory telogen hair follicles in mice fed adequate and high levels of retinyl esters in study 2. In mice bred and fed an unpurified diet retinol dehydrogenase SDR16C5, retinal dehydrogenase 2 (ALDH1A2), and cytochrome p450 26B1 (CYP26B1), enzymes and proteins involved in RA metabolism, localized to BMP4 positive refractory telogen hair follicles. This suggests that vitamin A may contribute to the inhibition of HFSC during refractory telogen in a dose dependent manner.

8.
Vet Dermatol ; 32(1): 74-e14, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470013

RESUMO

BACKGROUND: A new congenital hair-shaft abnormality resembling the lanceolate hair phenotype of rodents is described in a litter of four domestic short hair (DSH) cats. Data relating to hair shaft and follicle disorders remain scarce in veterinary medicine. OBJECTIVES: To describe and compare structural abnormalities in these cats with other hair dystrophies in cats and other mammals. ANIMALS: A DSH cat litter with progressive noninflammatory alopecia. METHODS AND MATERIALS: Histopathological evaluation, scanning and transmission electron microscopy, and X-ray based element analysis defined the hair and skin changes in cats born with alopecia. Findings were compared to archival data from normal cats and lanceolate hair (Dsg4lahJ ) and Keratin 75 (Krt75tm1Der ) mutant mice. RESULTS: Light and scanning electron microscopy of the hairs revealed lance- or spear-head shaped defects of the hair tip. Histological findings were swollen hair shafts, initially above the hair bulb matrix and later found in the distal parts of the telogen hair follicles, similar to those observed in Dsg4lahJ Krt75tm1Der mutant mice. Transmission electron microscopy of the hair shaft and hair follicles showed a loss in the normal structure of the guard hairs in the alopecic cats. There was a statistically significant decrease in sulfur content just below the defects in the hair shafts (trichothiodystrophy). CONCLUSION AND CLINICAL IMPORTANCE: A rare form of congenital alopecia resulting in follicular dystrophy is described in cats which is similar to hair follicle and hair-shaft changes reported in several mutant mouse strains with single gene mutations in adhesion molecules or keratin genes.


Assuntos
Alopecia , Doenças do Gato , Folículo Piloso , Alopecia/genética , Alopecia/patologia , Alopecia/veterinária , Animais , Doenças do Gato/patologia , Gatos , Cabelo/patologia , Folículo Piloso/patologia , Folículo Piloso/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Doenças dos Roedores/genética , Doenças dos Roedores/patologia , Pele/patologia
9.
Nutr Res ; 94: 10-24, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34571215

RESUMO

Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.


Assuntos
Proteínas de Transporte/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Pele/metabolismo , Tretinoína/metabolismo , Animais , Aromatase/metabolismo , Células Dendríticas/metabolismo , Epiderme , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Fulvestranto/farmacologia , Cabelo , Folículo Piloso/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Receptores de Estrogênio/metabolismo , Glândulas Sebáceas/metabolismo , Fatores Sexuais
10.
PLoS One ; 15(7): e0235295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687504

RESUMO

Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis.


Assuntos
Dermatite Atópica/genética , Inflamação/genética , Queratina-14/genética , Proteínas do Tecido Nervoso/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Animais , Apoptose/genética , Artrite/genética , Artrite/patologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Imunoglobulina E/genética , Inflamação/patologia , Integrases/genética , Interleucina-18/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , NF-kappa B/genética , Fenótipo , Transdução de Sinais
11.
PLoS Genet ; 16(7): e1008884, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639996

RESUMO

The membrane protein ANKH was known to prevent pathological mineralization of joints and was thought to export pyrophosphate (PPi) from cells. This did not explain, however, the presence of ANKH in tissues, such as brain, blood vessels and muscle. We now report that in cultured cells ANKH exports ATP, rather than PPi, and, unexpectedly, also citrate as a prominent metabolite. The extracellular ATP is rapidly converted into PPi, explaining the role of ANKH in preventing ankylosis. Mice lacking functional Ank (Ankank/ank mice) had plasma citrate concentrations that were 65% lower than those detected in wild type control animals. Consequently, citrate excretion via the urine was substantially reduced in Ankank/ank mice. Citrate was even undetectable in the urine of a human patient lacking functional ANKH. The hydroxyapatite of Ankank/ank mice contained dramatically reduced levels of both, citrate and PPi and displayed diminished strength. Our results show that ANKH is a critical contributor to extracellular citrate and PPi homeostasis and profoundly affects bone matrix composition and, consequently, bone quality.


Assuntos
Osso e Ossos/metabolismo , Calcinose/genética , Ácido Cítrico/metabolismo , Proteínas de Transporte de Fosfato/genética , Trifosfato de Adenosina/metabolismo , Animais , Desenvolvimento Ósseo/genética , Calcinose/metabolismo , Calcinose/patologia , Diferenciação Celular , Células Cultivadas , Difosfatos/metabolismo , Humanos , Fenômenos Mecânicos , Camundongos , Mutação/genética , Proteínas de Transporte de Fosfato/metabolismo
12.
Metabolites ; 10(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708296

RESUMO

Atopic dermatitis (AD) is a multifactorial disease associated with alterations in lipid composition and organization in the epidermis. Multiple variants of AD exist with different outcomes in response to therapies. The evaluation of disease progression and response to treatment are observational assessments with poor inter-observer agreement highlighting the need for molecular markers. SHARPIN-deficient mice (Sharpincpdm) spontaneously develop chronic proliferative dermatitis with features similar to AD in humans. To study the changes in the epidermal lipid-content during disease progression, we tested 72 epidermis samples from three groups (5-, 7-, and 10-weeks old) of cpdm mice and their WT littermates. An agnostic mass-spectrometry strategy for biomarker discovery termed multiple-reaction monitoring (MRM)-profiling was used to detect and monitor 1,030 lipid ions present in the epidermis samples. In order to select the most relevant ions, we utilized a two-tiered filter/wrapper feature-selection strategy. Lipid categories were compressed, and an elastic-net classifier was used to rank and identify the most predictive lipid categories for sex, phenotype, and disease stages of cpdm mice. The model accurately classified the samples based on phospholipids, cholesteryl esters, acylcarnitines, and sphingolipids, demonstrating that disease progression cannot be defined by one single lipid or lipid category.

13.
Mamm Genome ; 31(1-2): 49-53, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32088735

RESUMO

Design and production of genetically engineered mouse strains by individual research laboratories, research teams, large-scale consortia, and the biopharmaceutical industry have magnified the need for qualified personnel to identify, annotate, and validate (phenotype) these potentially new mouse models of human disease. The PATHBIO project has been recently established and funded by the European Union's ERASMUS+ Knowledge Alliance program to address the current shortfall in formally trained personnel. A series of teaching workshops will be given by experts on anatomy, histology, embryology, imaging, and comparative pathology to increase the availability of individuals with formal training to contribute to this important niche of Europe's biomedical research enterprise. These didactic and hands-on workshops are organized into three modules: (1) embryology, anatomy, histology, and the anatomical basis of imaging, (2) image-based phenotyping, and (3) pathology. The workshops are open to all levels of participants from recent graduates to Ph.D., M.D., and veterinary scientists. Participation is available on a competitive basis at no cost for attending. The first series of Workshop Modules was held in 2019 and these will continue for the next 2 years.


Assuntos
Pesquisa Biomédica/educação , Fenótipo , Animais , Animais Geneticamente Modificados , Pesquisa Biomédica/organização & administração , Currículo , Modelos Animais de Doenças , Humanos , Camundongos , Pesquisadores/educação
14.
Exp Dermatol ; 28(9): 1091-1093, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323149

RESUMO

2-deoxy D-glucose (2DG) was tested for efficacy in treating alopecia areata using the C3H/HeJ skin graft model. 2DG has proven to be efficacious in treatment of various mouse models of autoimmunity with minimal serious side effects noted. This agent has been shown to normalize abnormally activated T-cell populations while also preventing cell surface expression of NKG2D; key factors defining alopecia areata disease progression. Daily oral ingestion of 2DG via drinking water to mice with patchy or diffuse alopecia areata for 16 weeks failed to prevent expansion of alopecia or cause regrowth of hair in treated mice. Histologically, there were no differences between treated and control groups. These results indicate that, while 2DG is effective for some autoimmune diseases, it was not efficacious for the cell-mediated autoimmune mouse disease, alopecia areata.


Assuntos
Alopecia em Áreas/tratamento farmacológico , Desoxiglucose/uso terapêutico , Animais , Desoxiglucose/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Folículo Piloso/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C3H , Transplante de Pele , Falha de Tratamento
15.
Exp Mol Pathol ; 110: 104286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323190

RESUMO

Psoriasis (PS) is a common inflammatory and incurable skin disease affecting 2-3% of the human population. Although genome-wide association studies implicate more than 60 loci, the full complement of genetic factors leading to disease is not known. Rare, highly penetrant, gain-of-function, dominantly acting mutations within the human caspase recruitment domain family, member 14 (CARD14) gene lead to the development of PS and psoriatic arthritis (PSA) (a familial p.G117S and de-novo p.E138A alteration). These residues are conserved in mouse and orthologous Knock-In (KI) mutations within Card14 were created. The Card14tm.1.1Sun allele (G117S) resulted in no clinically or histologically evident phenotype of the skin or joints in young adult or old mice. However, mice carrying the Card14tm2.1Sun mutant allele (E138A) were runted and developed thick, white, scaly skin soon after birth, dying within two weeks or less. The skin hyperplasia and inflammation was remarkable similarity to human PS at the clinical, histological, and transcriptomic levels. For example, the skin was markedly acanthotic and exhibited orthokeratotic hyperkeratosis with minimal inflammation and no pustules and transcripts affecting critical pathways of epidermal differentiation and components of the IL17 axis (IL23, IL17A, IL17C, TNF and IL22) were altered. Similar changes were seen in a set of orthologous microRNAs previously associated with PS suggesting conservation across species. Crossing the Card14tm2.1Sun/WT mice to C57BL/6NJ, FVB/NJ, CBA/J, C3H/HeJ, and 129S1/SvImJ generated progeny with epidermal acanthosis and marked orthokeratotic hyperkeratosis regardless of the hybrid strain. Of these hybrid lines, only the FVB;B6N(129S4) mice survived to 250 days of age or older and has led to recombinant inbred lines homozygous for Card14E138A that are fecund and have scaly skin disease. This implicates that modifiers of PS severity exist in mice, as in the familial forms of the disease in humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Mutação com Ganho de Função , Genes Modificadores , Guanilato Ciclase/genética , Guanilato Quinases/fisiologia , Inflamação/genética , Proteínas de Membrana/genética , Psoríase/genética , Dermatopatias/genética , Animais , Feminino , Técnicas de Introdução de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Psoríase/patologia , Índice de Gravidade de Doença , Dermatopatias/patologia , Transcriptoma
16.
J Invest Dermatol ; 139(12): 2447-2457.e7, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31207231

RESUMO

Pseudoxanthoma elasticum, a prototype of heritable multisystem ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter, ABCC6. The phenotypic spectrum of pseudoxanthoma elasticum varies, and the correlation between genotype and phenotype has not been established. To identify genetic modifiers, we performed quantitative trait locus analysis in inbred mouse strains that carry the same hypomorphic allele in Abcc6 yet with highly variable ectopic mineralization phenotypes of pseudoxanthoma elasticum. Abcc6 was confirmed as a major determinant for ectopic mineralization in multiple tissues. Integrative analysis using functional genomics tools that included GeneWeaver, String, and Mouse Genome Informatics identified a total of nine additional candidate modifier genes that could influence the organ-specific ectopic mineralization phenotypes. Integration of the candidate genes into the existing ectopic mineralization gene network expands the current knowledge on the complexity of the network that, as a whole, governs ectopic mineralization in soft connective tissues.


Assuntos
DNA/genética , Genes Modificadores/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Animais , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fenótipo , Pseudoxantoma Elástico/genética
17.
Vet Pathol ; 56(5): 799-806, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31060453

RESUMO

During a screen for vascular phenotypes in aged laboratory mice, a unique discrete phenotype of hyaline arteriolosclerosis of the intertubular arteries and arterioles of the testes was identified in several inbred strains. Lesions were limited to the testes and did not occur as part of any renal, systemic, or pulmonary arteriopathy or vasculitis phenotype. There was no evidence of systemic or pulmonary hypertension, and lesions did not occur in ovaries of females. Frequency was highest in males of the SM/J (27/30, 90%) and WSB/EiJ (19/26, 73%) strains, aged 383 to 847 days. Lesions were sporadically present in males from several other inbred strains at a much lower (<20%) frequency. The risk of testicular hyaline arteriolosclerosis is at least partially underpinned by a genetic predisposition that is not associated with other vascular lesions (including vasculitis), separating out the etiology of this form and site of arteriolosclerosis from other related conditions that often co-occur in other strains of mice and in humans. Because of their genetic uniformity and controlled dietary and environmental conditions, mice are an excellent model to dissect the pathogenesis of human disease conditions. In this study, a discrete genetically driven phenotype of testicular hyaline arteriolosclerosis in aging mice was identified. These observations open the possibility of identifying the underlying genetic variant(s) associated with the predisposition and therefore allowing future interrogation of the pathogenesis of this condition.


Assuntos
Envelhecimento , Arteriosclerose/veterinária , Hialina/metabolismo , Doenças dos Roedores/patologia , Doenças Testiculares/veterinária , Animais , Arteriosclerose/genética , Arteriosclerose/patologia , Feminino , Predisposição Genética para Doença , Masculino , Camundongos , Camundongos Endogâmicos , Doenças dos Roedores/genética , Doenças Testiculares/genética , Doenças Testiculares/patologia , Testículo/patologia
18.
PLoS Genet ; 15(5): e1008123, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042701

RESUMO

Bone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis. Here, we performed a genome-wide association study (GWAS) in a panel of inbred strains to identify associations influencing BMD. This analysis identified a significant (P = 3.1 x 10-12) BMD locus on Chromosome 3@52.5 Mbp that replicated in two separate inbred strain panels and overlapped a BMD quantitative trait locus (QTL) previously identified in a F2 intercross. The association mapped to a 300 Kbp region containing four genes; Gm2447, Gm20750, Cog6, and Lhfp. Further analysis found that Lipoma HMGIC Fusion Partner (Lhfp) was highly expressed in bone and osteoblasts. Furthermore, its expression was regulated by a local expression QTL (eQTL), which overlapped the BMD association. A co-expression network analysis revealed that Lhfp was strongly connected to genes involved in osteoblast differentiation. To directly evaluate its role in bone, Lhfp deficient mice (Lhfp-/-) were created using CRISPR/Cas9. Consistent with genetic and network predictions, bone marrow stromal cells (BMSCs) from Lhfp-/- mice displayed increased osteogenic differentiation. Lhfp-/- mice also had elevated BMD due to increased cortical bone mass. Lastly, we identified SNPs in human LHFP that were associated (P = 1.2 x 10-5) with heel BMD. In conclusion, we used GWAS and systems genetics to identify Lhfp as a regulator of osteoblast activity and bone mass.


Assuntos
Osso e Ossos/metabolismo , Genoma , Proteínas de Fusão Oncogênica/genética , Osteoblastos/metabolismo , Osteoporose/genética , Locos de Características Quantitativas , Tetraspaninas/genética , Animais , Densidade Óssea , Osso e Ossos/patologia , Diferenciação Celular , Mapeamento Cromossômico , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Proteínas de Fusão Oncogênica/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Osteoporose/metabolismo , Osteoporose/patologia , Polimorfismo de Nucleotídeo Único
19.
Sci Rep ; 9(1): 4025, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858527

RESUMO

Data are increasingly annotated with multiple ontologies to capture rich information about the features of the subject under investigation. Analysis may be performed over each ontology separately, but recently there has been a move to combine multiple ontologies to provide more powerful analytical possibilities. However, it is often not clear how to combine ontologies or how to assess or evaluate the potential design patterns available. Here we use a large and well-characterized dataset of anatomic pathology descriptions from a major study of aging mice. We show how different design patterns based on the MPATH and MA ontologies provide orthogonal axes of analysis, and perform differently in over-representation and semantic similarity applications. We discuss how such a data-driven approach might be used generally to generate and evaluate ontology design patterns.


Assuntos
Envelhecimento/patologia , Ontologias Biológicas , Semântica , Algoritmos , Animais , Ciência de Dados/métodos , Bases de Dados como Assunto , Conjuntos de Dados como Assunto , Feminino , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...