Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34626441

RESUMO

Taking advantages of the versatile functionality and tunable energy dissipation, aggregation-induced emission luminogens (AIEgens) emerge as a rising star to afford multimodal theranostics platform. Nevertheless, the construction of AIE-active phototheranostic agent in the second near-infrared window (NIR-II, 1000-1700 nm) which allows superior resolution and minimized photodamage is still a formidably challenging suffering from the limited candidate of building blocks. Herein, benzo[c]thiophene is innovatively utilized as electron-rich and bulky donor (D)/π-bridge which can enlarge the conjugation length and distort the backbone. By precise D/π-bridge engineering, highly stable NIR-II AIEgen DPBTA-DPTQ NPs with acceptable NIR-II fluorescence quantum yield and excellent photothermal conversion efficiency of 40.6% under 808 nm laser irradiation are successfully obtained. In addition, the exactly spatial conformation of DPBTA-DPTQ is determined for the first time by associating X-ray single crystal diffraction and theoretical simulations, elaborately revealing the relationship between structure and AIE effect/photothermal performance. Extensive in vitro tests demonstrate that DPBTA-DPTQ NPs with good biocompatibility show efficient photothermal therapeutic effects. Furthermore, their prominent performance on fluorescence-photoacoustic-photothermal trimodal imaging-guided photothermal eradication of tumor is verified in HepG2 and B16-F10 tumor-xenografted mice, demonstrating distinguished cancer theranostic capability.

2.
Mater Horiz ; 8(10): 2816-2822, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605838

RESUMO

Room temperature phosphorescence (RTP) and mechanoluminescence (ML) materials are in high demand because of their promising applications in optoelectronic devices. However, most materials bear only one of these properties and molecules bearing both of them are rarely reported. Here, we report a carbazole derivative 1, which displays both RTP activity and near-ultraviolet ML properties. These properties are highly related to the packing modes and molecular configuration as revealed by the analysis of their crystal structures and theoretical calculations. The near-ultraviolet ML of 1 can further serve as the exciting light source to transfer its energy to luminescent dyes to realize colorful ML. The thermal-responsive RTP of 1 can be utilized to prepare anti-counterfeiting tags for simple security protection. This work has put forward a simple but efficient strategy to prepare multifunctional molecular systems bearing both RTP and ML properties.

3.
Adv Mater ; : e2105113, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605067

RESUMO

Microscopic control of macroscopic phenomena is one of the core subjects in materials science. Particularly, the spatio-temporal control of material behaviors through a non-contact way is of fundamental importance but is difficult to accomplish. Herein, a strategy to realize remote spatio-temporal control of luminescence behaviors is reported. A multi-arm salicylaldehyde benzoylhydrazone-based aggregation-induced emission luminogen (AIEgen)/metal-ion system, of which the fluorescence can be gated by the UV irradiation with time dependency, is developed. By changing the metal-ion species, the fluorescence emission and the intensity can also be tuned. The mechanism of the UV-mediated fluorescence change is investigated, and it is revealed that a phototriggered aggregation-induced emission (PTAIE) process contributes to the behaviors. The AIEgen is further covalently integrated into a polymeric network and the formed gel/metal-ion system can achieve laser-mediated mask-free writing enabled by the PTAIE process. Moreover, by further taking advantage of the time-dependent self-healing property of hydrazone-based dynamic covalent bond, transformable 4D soft patterns are generated. The findings and the strategy increase the ways to manipulate molecules on the supramolecule or aggregate level. They also show opportunities for the development of controllable smart materials and expand the scope of the materials in advanced optoelectronic applications.

4.
Adv Healthc Mater ; : e2101167, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606177

RESUMO

Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, we design and synthesize a series of PPE derivatives with typical aggregation-induced emission (AIE) properties. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor resection surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing functional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability. This article is protected by copyright. All rights reserved.

5.
Small ; : e2103125, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34612010

RESUMO

Stimuli-responsive crystals capable of energy conversion have emerged as promising materials for smart sensors, actuators, wearable devices, and robotics. Here, a novel ferrocene-based organic molecule crystal (Fc-Cz) that possesses anisotropic piezoelectric, optical, and mechanical properties is reported. It is demonstrated that the new crystal Fc-Cz can be used as an ultrasensitive piezoelectric material in fabricating strain sensors. The flexible sensor made of crystal Fc-Cz can detect small strains/deformations and motions with a fast response speed. Analysis based on density functional theory (DFT) indicates that an external pressure can affect the dipole moment by changing the molecular configuration of the asymmetric single crystal Fc-Cz in the crystalline state, leading to a change of polarity, and thereby an enhanced dielectric constant. This work demonstrates a new artificial organic small molecule for high-performance tactile sensors, indicating its great potential for developing low-cost flexible wearable sensors.

6.
Chemistry ; 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634149

RESUMO

Organic materials with multiple emissions tunable by external stimuli represent a great challenge. TTPyr, crystallizing in different polymorphs, shows a very rich photophyisics comprising excitation-dependent fluorescence and phosphorescence at ambient conditions, and mechanochromic and thermochromic behavior. Transformation among the different species has been followed by thermal and X-ray diffraction analysis and the emissive features interpreted through structural results and DFT/TDDFT calculations. Particularly intriguing is the polymorph obtained at high temperature, TTPyr(HT), whose non-centrosymmetric structure guarantees an SHG efficiency 10 times higher than that of standard urea. Its crystal packing, where only the TT units are strongly rigidified by π-π stacking interactions while the Pyr moieties possess partial conformational freedom, is responsible for the observed dual fluorescence. The potentialities of TTPyr for bioimaging have been successfully established.

7.
Adv Healthc Mater ; : e2101177, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637607

RESUMO

Fluorescent probes with aggregation-induced emission (AIE) property have become fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast traditional AIE materials are obscured by the off-target effects and the lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potentials in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescent probes, we can accurately analyze the targets of interest. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, we summarize the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy and the corresponding applications in biological fields. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, we also outline and discuss the challenges and prospects of the AIE-featured photoactivatable materials. This article is protected by copyright. All rights reserved.

8.
J Am Chem Soc ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34520199

RESUMO

Selenium-containing polymers are a group of fascinating functional polymers with unique structures, properties, and applications, which have been developed recently but only with limited examples. The challenges of developing selenium-containing polymers with structural and functional diversity include the lack of economic and safe monomers, lack of efficient and convenient synthetic approaches, and poor stability of selenium-involving covalent bonds. In this work, room-temperature metal-free multicomponent polymerizations (MCPs) of elemental selenium, diisocyanides, and dipropargyl alcohols were developed, and polymers with a selenium-containing aliphatic heterocycle, 1,3-oxaselenolane, were synthesized through these MCPs directly from elemental selenium. The alicyclic poly(oxaselenolane)s enjoyed high yields (up to 93%), high molecular weights (up to 15 600 g/mol), high thermal and chemical stability, good solubility and processability. With the structural design of the poly(oxaselenolane)s and their high selenium contents of up to 33.7 wt %, the refractive indices of their spin-coated thin films could reach 1.8026 at 633 nm and maintain 1.7770 at 1700 nm. It is anticipated that these efficient, convenient, mild, and economic multicomponent polymerizations of elemental selenium can promote the selenium-related polymer chemistry and accelerate the exploration of diversified selenium-containing functional polymer materials.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34558786

RESUMO

White-light emitting polymers (WLEPs) based on aggregation microenvironment-sensitive aggregation-induced emission (AIE) and Förster resonance energy transfer (FRET) have aroused great interest in lighting and optoelectronic devices. Herein, we developed a novel strategy to construct WLEP particles via a stepwise self-stabilized precipitation polymerization of two emission-complementary AIEgens under core-shell engineering, where the AIE characteristics and FRET process of core-shell fluorescent polymeric particles (CS-FPPs) could be modulated by altering aggregation microenvironment under swelling and shrinking of polymers, facilitating the tunable white light emission of CS-FPPs. Furthermore, such tuning could be fast realized in the solid state, thus demonstrating the potential in anti-counterfeiting. This work proved the significance of aggregation microenvironment on emission of luminogens, guiding the development of high-efficiency emission-tunable materials.

10.
Adv Mater ; : e2105418, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541727

RESUMO

With the continuous advancement of information technology, the requirements for the information storage capacity of materials are getting higher and higher. However, information code materials usually only store a single piece of information. In order to improve their storage capacity, aggregation-induced emission (AIE) supramolecular adhesive hydrogels with different fluorescent colors are prepared, and a "Codes in Code" method is used to demonstrate the storage capacity for large amounts of information. Four kinds of poly(vinyl alcohol) (PVA) supramolecular hydrogels with different fluorescent colors are prepared; based on the hydrogen bonds on the hydrogel surface, these hydrogels can be assembled into a hydrogel, G5, which shows multiple fluorescent colors under the irradiation of UV light. When many 1D barcode patterns or/and 2D code patterns are incorporated into G5, not only a kind of 3D information but also plenty of 1D or/and 2D information can be stored. Therefore, the information codes prepared by the "Codes in Code" method can store a large amount of information.

11.
Mater Horiz ; 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545892

RESUMO

By combining aggregation-induced emission (AIE) effect and a triplet-triplet upconversion (TTU) process, a blue emitter with excellent photoluminescence quantum efficiency and high upconversion efficiency in the film state is developed, from which a highly efficient non-doped blue TTU organic light-emitting diode (TTU-OLED) was realized.

12.
Nat Commun ; 12(1): 5496, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535652

RESUMO

Purely-organic clusterization-triggered emission (CTE) has displayed promising abilities in bioimaging, chemical sensing, and multicolor luminescence. However, it remains absent in the field of circularly polarized luminescence (CPL) due to the difficulties in well-aligning the nonconventional luminogens. We report a case of CPL generated with CTE using the solid phase molecular self-assembly (SPMSA) of poly-L-lysine (PLL) and oleate ion (OL), that is, the macroscopic CPL supramolecular film self-assembled by the electrostatic complex of PLL/OL under mechanical pressure. Well-defined interface charge distribution, given by lamellar mesophases of OL ions, forces the PLL chains to fold regularly as a requirement of optimal electrostatic interactions. Further facilitated by hydrogen bonding, the through-space conjugation (TSC) of orderly aligned electron-rich O and N atoms leads to CTE-based CPL, which is capable of transferring energy to an acceptor via a Förster resonance energy transfer (FRET) process, making it possible to develop environmentally friendly and economic CPL from sustainable and renewable materials.

13.
Nanoscale ; 13(32): 13610-13616, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477635

RESUMO

Biofilm-related infections, such as dental plaque, chronic sinusitis, native valve endocarditis, and chronic airway infections in cystic fibrosis have brought serious suffering to patients and financial burden to society. Materials that can eliminate mature biofilms without developing drug resistance are promising tools to treat biofilm-related infections, and thus they are in urgent demand. Herein, we designed and readily prepared organic nanoparticles (NPs) with highly efficient photothermal conversion by harvesting energy via excited-state intramolecular motions and enlarging molar absorptivity. The photothermal NPs can sufficiently eliminate mature bacterial biofilms upon low-power near-infrared laser irradiation. NPs hold great promise for the rapid eradication of bacterial biofilms by photothermal therapy.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Biofilmes , Humanos , Terapia Fototérmica
14.
Mater Horiz ; 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505616

RESUMO

Red-to-near-infrared (NIR) fluorophores are highly desirable in bio-imaging studies with advantages of high tissue penetration ability and less interference from auto-fluorescence. However, their preparation usually requires tedious synthetic procedures, which seriously restrict their applications. Thus, the direct preparation of red-to-NIR fluorophores from easily available substrates is highly desirable. Compared with the conventional closed-shell fluorophores, radical cations feature a large red-shift absorption, but only very few of them are fluorescent and they suffer from high instability. Herein, we proposed a convenient strategy for the preparation of red-to-NIR fluorophores through air oxidation of electron-rich 2,5-dimethylpyrroles to in situ generate red-to-NIR emissive radical cations, which can be stabilized by adsorption on silica gel-coated thin layer chromatography (TLC) plates or encapsulated in cucurbit[7]uril (CB[7]). The radical cations derived from pyrroles were verified using electron paramagnetic resonance (EPR) spectroscopy, theoretical calculations and one-electron oxidation experiments. Moreover, the pyrrole-derived radical cations encapsulated in CB[7] can be used for mitochondrial imaging in living cells with high specificity and in vivo imaging with long-term stability. The easily available pyrrole-derived radical cations with red-to-NIR emission are thus promising for biomedical applications.

15.
Angew Chem Int Ed Engl ; 60(41): 22417-22423, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34343403

RESUMO

Butterfly-like molecules of oxacalix[2]arene[2]pyrazine (OAP) are reported, which exhibit the typical characteristics of aggregation-induced emission (AIE) via the restriction of intramolecular vibration (RIV) mechanism. Unlike any of the reported RIV-type AIE molecules, the synthetic procedures of which are complicated and have associated high costs, OAP AIEgens can be synthesized in a facile manner by a one-step catalyst-free reaction using commercially available materials. Notably, OAP AIEgens are ideal ligands for constructing metal-organic frameworks (MOFs) due to their built-in pyrazine coordination sites. OAP-based MOFs exhibit multiple potential applications in reversible gas response, encrypted information storage, and construction of white light-emitting devices. This work builds on RIV-type AIEgens, offers additional selections of bridging ligands for constructing luminescent MOFs and provides a visualized prototype to understand the effect of the RIV process on the luminescence properties of MOFs.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34459540

RESUMO

Tailor-made red thermally activated delayed fluorescence (TADF) molecules comprised of an electron-withdrawing pyrazino[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile core and various electron-donating triarylamines are developed. They can form intramolecular hydrogen-bonding, which is conducive to improving emission efficiency and promoting horizontal orientation and show near infrared (NIR) emissions (692-710 nm) in neat films and red delayed fluorescence (606-630 nm) with high photoluminescence quantum yields (73-90%) in doped films. They prefer horizontal orientation with large horizontal dipole ratios in films, rendering high optical out-coupling factors (0.39-0.41). Their non-doped OLEDs exhibit NIR lights (716-748 nm) with maximum external quantum efficiencies (ηext,max ) of 1.0-1.9%. And their doped OLEDs radiate red lights (606-648 nm) and achieve record-beating ηext,max of up to 31.5%. These new red TADF materials should have great potentials in display and lighting devices.

17.
Adv Mater ; 33(39): e2101500, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350646

RESUMO

Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. A series of composite hydrogels with compartmentalized thermal response is designed by incorporating aggregation- and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. The fluorescence technique is explored as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening is attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.

18.
Small ; 17(37): e2102044, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34342937

RESUMO

Phototheranostics based on luminogens with aggregation-induced emission (AIE) characteristics is captivating increasing research interest nowadays. However, AIE luminogens are inherently featured by inferior absorption coefficients (ε) resulting from the distorted molecular geometry. Besides, molecular innovation of long-wavelength light-excitable AIE luminogens with highly efficient phototheranostic outputs is an appealing yet significantly challenging task. Herein, on the basis of a fused-ring electron acceptor-donator-acceptor (A-D-A) type molecule (IDT) with aggregation-caused quenching (ACQ) properties, molecular engineering smoothly proceeds and successfully yields a novel AIE luminogen (IDT-TPE) via simply modifying tetraphenylethene (TPE) moieties on the sides of IDT backbone. The AIE tendency endows IDT-TPE nanoparticles with enhanced fluorescence brightness and far superior fluorescence imaging performance to IDT nanoparticles for mice tumors. Moreover, IDT-TPE nanoparticles exhibit near-infrared light-excitable features with a high ε of 8.9 × 104 m-1 cm-1 , which is roughly an order of magnitude higher than that of most previously reported AIE luminogens. Combining with their reactive oxygen species generation capability and extremely high photothermal conversion efficiency (59.7%), IDT-TPE nanoparticles actualize unprecedented performance in multimodal phototheranostics. This study thus brings useful insights into the development of versatile phototheranostic materials with great potential for practical cancer theranostics.

19.
Angew Chem Int Ed Engl ; 60(41): 22241-22247, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387938

RESUMO

Ultraviolet (UV) organic emitters that can open up applications for future organic light-emitting diodes (OLEDs) are of great value but rarely developed. Here, we report a high-quality UV emitter with hybridized local and charge-transfer (HLCT) excited state and its application in UV OLEDs. The UV emitter, 2BuCz-CNCz, shows the features of low-lying locally excited (LE) emissive state and high-lying reverse intersystem crossing (hRISC) process, which helps to balance the color purity and exciton utilization of UV OLED. Consequently, the OLED based on 2BuCz-CNCz exhibits not only a desired narrowband UV electroluminescent (EL) at 396 nm with satisfactory color purity (CIEx, y =0.161, 0.031), but also a record-high maximum external quantum efficiency (EQE) of 10.79 % with small efficiency roll-off. The state-of-the-art device performance can inspire the design of UV emitters, and pave a way for the further development of high-performance UV OLEDs.

20.
Adv Mater ; 33(41): e2103748, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34423484

RESUMO

The development of multifunctional nanoplatforms has been recognized as a promising strategy for potent photodynamic theranostics. Aggregation-induced emission (AIE) photosensitizers undergoing Type-I reactive oxygen species (ROS) generation pathway appear as potential candidates due to their capability of hypoxia-tolerance, efficient ROS production, and fluorescence imaging navigation. To further improve their performance, a facile and universal method of constructing a type of glutathione (GSH)-depleting and near-infrared (NIR)-regulated nanoplatform for dual-modal imaging-guided photodynamic therapy (PDT) is presented. The nanoplatforms are obtained through the coprecipitation process involving upconversion nanoparticles (UCNPs) and AIE-active photosensitizers, followed by in situ generation of MnO2 as the outer shell. The introduction of UCNPs actualizes the NIR-activation of AIE-active photosensitizers to produce ·OH as a Type-I ROS. Intracellular upregulated GSH-responsive decomposition of the MnO2 shell to Mn2+ realizes GSH-depletion, which is a distinctive approach for elevating intracellular ·OH. Meanwhile, the generated Mn2+ can implement T1 -weighted magnetic resonance imaging (MRI) in specific tumor sites, and mediate the conversion of intracellular H2 O2 to ·OH. These outputs reveal a triple-jump ·OH production, and this approach brings about distinguished performance in FLI-MRI-guided PDT with high-efficacy, which presents great potential for future clinical translations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...