Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339199


Multiple cis-acting elements are present in promoter sequences that play critical regulatory roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and performed a cis-acting elements prediction analysis. The plant expression vector pGhFDH::GUS was constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis and upland cotton plants to obtain transgenic lines. Histochemical staining and a ß-glucuronidase (GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflorescences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed in different tissues. In the transgenic lines, high GUS activity was detected in different tissues such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven GUS expression levels were 3-10-fold higher compared to those under the CaMV 35S promoter at 10-30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can be used as an endogenous constitutive promoter to drive the expression of target genes in various cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.

Arabidopsis , Gossypium , Gossypium/genética , Gossypium/metabolismo , Regiões Promotoras Genéticas , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo
Physiol Plant ; 171(1): 161-172, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064336


Calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) play a crucial role in biotic and abiotic stress responses. However, the roles of different CIPKs in biotic and abiotic stress responses are less well characterized. In this study, we identified a mutation leading to an early protein termination of the maize CIPK gene ZmCIPK42 that undergoes a G to A mutation at the coding region via searching for genes involved in salt stress tolerance and ion homeostasis from maize with querying the EMS mutant library of maize B73. The mutant zmcipk42 plants have less branched tassel and impaired salt stress tolerance at the seedling stage. Quantitative real-time PCR analysis revealed that ZmCIPK42was expressed in diverse tissues and was induced by NaCl stress. A yeast two-hybrid screen identified a proteinase inhibitor (ZmMPI) as well as calcineurin B-like protein 1 and protein 4 (ZmCBL1, ZmCBL4) as interaction partners of ZmCIPK42. These interactions were further confirmed by bimolecular fluorescence complementation in plant cells. Moreover, over-expressing ZmCIPK42 resulted in enhanced tolerance to high salinity in both maize and Arabidopsis. These findings suggest that ZmCIPK42 is a positive regulator of salt stress tolerance and is a promising candidate gene to improve salt stress tolerance in maize through genetic manipulation.

Proteínas Quinases , Zea mays , Calcineurina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/genética , Estresse Fisiológico , Zea mays/genética , Zea mays/metabolismo
Genes Genomics ; 42(12): 1455-1465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33155109


BACKGROUND: Abiotic stress effects agricultural production, so research on improving stress tolerance of crop is important. Suaeda salsa is a halophyte with high salt and drought tolerance and ability to desalinate saline soil and improve soil quality. OBJECTIVE: To discover and utilize of salt and drought tolerance-related genes, we further investigated the mechanisms of salt and drought tolerance. METHODS: Through screening a salt treated Suaeda salsa cDNA library and further cloning a H subunit of the photosystem I reaction center SsPsaH cDNA, and then the protein domain and phylogenetic analyses of PSI genes was conducted with the NCBI Blast, DNAMAN, and MotifScan programs. The S. salsa seedlings were subjected to various stress treatments and analyze expression of SsPsaH under these treatments by real-time RT-PCR. SsPsaH expression construct was introduced into S. pombe cells by electroporation and transformed into N. tabacum plants by the leaf disc transformation method. RESULTS: A member of the H subunit of the Photosystem I reaction center (defined as SsPsaH) was obtained. The expression of SsPsaH was up-regulated by abscisic acid (ABA), salt, and drought stress treatments. Over-expressing SsPsaH in recombinant yeasts enhanced high salinity tolerance and increased tolerance to sorbitol during seed germination and seedling root development in tobacco, respectively. Some stress-related mark genes such as a LEA family gene of NtLEA, a binding protein of a drought response element of NtDREB, the ascorbate peroxidase gene (NtAPX) were also up-regulated in SsPsaH overexpressing transgenic tobacco lines. CONCLUSIONS: These results show that SsPsaH may contribute to the salt and osmotic stress response of plants.

Chenopodiaceae/metabolismo , Secas , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Tolerância ao Sal