Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(33): 7861-7869, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35977384

RESUMO

To use efficiently the magnetic functionalities emerging at the surfaces or interfaces of novel lanthanides-based materials, there is a need for complementary methods to probe the atomic-layer resolved magnetic properties. Here, we show that 4f photoelectron spectroscopy is highly sensitive to the collective orientation of 4f magnetic moments and, thus, a powerful tool for characterizing the related properties. To demonstrate this, we present the results of systematic study of a family of layered crystalline 4f-materials, which are crystallized in the body-centered tetragonal ThCr2Si2 structure. Analysis of 4f spectra indicates that the 4f moments at the surface experience a strong reorientation with respect to the bulk, caused by changes of the crystal-electric field. The presented database of the computed 4f spectra for all trivalent rare-earth ions in their different MJ states will facilitate the estimation of the orientation of the 4f magnetic moments in the layered 4f-systems for efficient control of their magnetic properties.

2.
ACS Nano ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442015

RESUMO

A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the Γ̅ point and canting of spins at the K̅ point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at K̅ is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the Γ̅ point and 8 meV K̅-K'¯ valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.

3.
ACS Nano ; 16(3): 3573-3581, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156797

RESUMO

The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.

4.
Adv Sci (Weinh) ; 8(17): e2101455, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34293238

RESUMO

Monolayer hexagonal boron nitride (hBN) is attracting considerable attention because of its potential applications in areas such as nano- and opto-electronics, quantum optics and nanomagnetism. However, the implementation of such functional hBN demands precise lateral nanostructuration and integration with other two-dimensional materials, and hence, novel routes of synthesis beyond exfoliation. Here, a disruptive approach is demonstrated, namely, imprinting the lateral pattern of an atomically stepped one-dimensional template into a hBN monolayer. Specifically, hBN is epitaxially grown on vicinal Rhodium (Rh) surfaces using a Rh curved crystal for a systematic exploration, which produces a periodically textured, nanostriped hBN carpet that coats Rh(111)-oriented terraces and lattice-matched Rh(337) facets with tunable width. The electronic structure reveals a nanoscale periodic modulation of the hBN atomic potential that leads to an effective lateral semiconductor multi-stripe. The potential of such atomically thin hBN heterostructure for future applications is discussed.

5.
Nat Commun ; 12(1): 2542, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953174

RESUMO

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.

6.
ACS Nano ; 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33136362

RESUMO

Renewed interest in the ferroelectric semiconductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of ∼10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (∼68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of ∼10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.

7.
Nanotechnology ; 30(23): 234004, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30780145

RESUMO

We used x-ray photoemission and absorption spectroscopies to study the influence of thermal molecular oxygen exposure on the h-BN/Co(0001) and h-BN/Au/Co(0001) systems. The spectral analysis was supported by density functional theory calculations. It is shown that oxygen can intercalate h-BN on Co(0001) and also be embedded into its lattice, replacing the nitrogen atoms. Upon substitution, the structures containing one (BN2O) and three (BO3) oxygen atoms in the boron atom environment are formed predominantly. In the case of gold-intercalated h-BN, only the (BN2O) structures are formed; the long-lasting oxygen exposures lead to etching of the h-BN layer.

8.
Nanoscale ; 10(48): 22810-22817, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30488051

RESUMO

Embedding foreign atoms in graphene and interchanging the underlying substrate are proved to be efficient methods for manipulating the properties of graphene. Combining ARPES experiments with DFT calculations we show that boron-doped graphene (B-graphene) grown on a Co(0001) substrate by chemical vapor deposition (CVD) becomes hole doped and its Fermi surface near the K-point reveals strongly spin-polarized states. The latter stems from the spin-polarized mini Dirac cone that is an intrinsic two-dimensional feature of the graphene/Co(0001) interface and is formed by a mixture of C 2pz and Co 3d states. Since the CVD method allows the achievement of up to 20 at% of incorporated B atoms, this provides a certain flexibility for handling the spin-polarized properties of the system. We also show that the bonding of the B-graphene layer to the Co(0001) substrate can be released by intercalation of Li into the interface. This allows the exploration of the doping effect in detail. Finally, our ARPES data indicate a gap opening in the Dirac cone as a result of the highly unbalanced boron concentrations in the two graphene sublattices.

9.
ACS Nano ; 12(8): 7571-7582, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30004663

RESUMO

We investigate the electronic and vibrational properties of bottom-up synthesized aligned armchair graphene nanoribbons of N = 7 carbon atoms width periodically doped by substitutional boron atoms (B-7AGNRs). Using angle-resolved photoemission spectroscopy and density functional theory calculations, we find that the dopant-derived valence and conduction band states are notably hybridized with electronic states of Au substrate and spread in energy. The interaction with the substrate leaves the bands with pure carbon character rather unperturbed. This results in an identical effective mass of ≈0.2 m0 for the next-highest valence band compared with pristine 7AGNRs. We probe the phonons of B-7AGNRs by ultrahigh-vacuum (UHV) Raman spectroscopy and reveal the existence of characteristic splitting and red shifts in Raman modes due to the presence of substitutional boron atoms. Comparing the Raman spectra for three visible lasers (red, green, and blue), we find that interaction with gold suppresses the Raman signal from B-7AGNRs and the energy of the green laser (2.33 eV) is closer to the resonant E22 transition. The hybridized electronic structure of the B-7AGNR-Au interface is expected to improve electrical characteristics of contacts between graphene nanoribbon and Au. The Raman fingerprint allows the easy identification of B-7AGNRs, which is particularly useful for device fabrication.

10.
Nanoscale ; 10(25): 12123-12132, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29915820

RESUMO

Recrystallization of bulk materials is a well-known phenomenon, which is widely used in commercial manufacturing. However, for low-dimensional materials like graphene, this process still remains an unresolved puzzle. Thus, the understanding of the underlying mechanisms and the required conditions for recrystallization in low dimensions is essential for the elaboration of routes towards the inexpensive and reliable production of high-quality nanomaterials. Here, we unveil the details of the efficient recrystallization of one-atom-thick pure and boron-doped polycrystalline graphene layers on a Co(0001) surface. By applying photoemission and electron diffraction, we show how more than 90% of the initially misoriented graphene grains can be reconstructed into a well-oriented and single-crystalline layer. The obtained recrystallized graphene/Co interface exhibits high structural quality with a pronounced sublattice asymmetry, which is important for achieving an unbalanced sublattice doping of graphene. By exploring the kinetics of recrystallization for native and B-doped graphene on Co, we were able to estimate the activation energy and propose a mechanism of this process.

11.
ACS Nano ; 11(6): 6336-6345, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28494148

RESUMO

Regardless of the widely accepted opinion that there is no Raman signal from single-layer graphene when it is strongly bonded to a metal surface, we present Raman spectra of a graphene monolayer on Ni(111) and Co(0001) substrates. The high binding energy of carbon to these surfaces allows formation of lattice-matched (1 × 1) structures where graphene is significantly stretched. This is reflected in a record-breaking shift of the Raman G band by more than 100 cm-1 relative to the case of freestanding graphene. Using electron diffraction and photoemission spectroscopy, we explore the aforementioned systems together with polycrystalline graphene on Co and analyze possible intercalation of oxygen at ambient conditions. The results obtained are fully supported by Raman spectroscopy. Performing a theoretical investigation of the phonon dispersions of freestanding graphene and stretched graphene on the strongly interacting Co surface, we explain the main features of the Raman spectra. Our results create a reliable platform for application of Raman spectroscopy in diagnostics of chemisorbed graphene and related materials.

12.
J Phys Chem B ; 121(11): 2400-2406, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28252973

RESUMO

The rapidly developing field of bionanotechnology requires detailed knowledge of the mechanisms of interaction between inorganic matter and biomolecules. Under conditions different from those in an aqueous solution, however, the chemistry of these systems is elusive and may differ dramatically from their interactions in vitro and in vivo. Here, we report for the first time a photoemission study of a metal silver-DNA interface, formed in vacuo, in comparison with DNA-Ag+ and fluorescent DNA-Ag complexes formed in solution. The high-resolution photoelectron spectra reveal that in vacuo silver atoms interact mainly with oxygen atoms of the phosphodiester bond and deoxyribose in DNA, in contrast to the behavior of silver ions, which interact preferentially with the nitrogen atoms of the bases. This offers new insight into the mechanism of DNA metallization, which is of importance in creating metal-bio interfaces for nanotechnology applications.


Assuntos
Cátions Monovalentes/química , DNA/química , Nitrato de Prata/química , Prata/química , Fluorescência , Nitrogênio/química , Oxigênio/química , Espectroscopia Fotoeletrônica
13.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27248659

RESUMO

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

14.
ACS Nano ; 9(7): 7314-22, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26121999

RESUMO

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.

15.
Nano Lett ; 15(4): 2396-401, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25734657

RESUMO

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.

16.
ACS Nano ; 9(1): 320-6, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25560087

RESUMO

Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive.

17.
Nano Lett ; 14(9): 4982-8, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25136909

RESUMO

Many propositions have been already put forth for the practical use of N-graphene in various devices, such as batteries, sensors, ultracapacitors, and next generation electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene, which allows efficient conversion of pyridinic N to graphitic N and therefore precise tuning of the charge carrier concentration. By applying photoemission spectroscopy and density functional calculations, we show that the electron doping effect of graphitic N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic configuration, the efficiency of doping rises up to half of electron charge per N atom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...