Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.415
Filtrar
1.
Adv Sci (Weinh) ; : e2310227, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984448

RESUMO

Doxorubicin (DOX) is an effective anticancer agent, but its clinical utility is constrained by dose-dependent cardiotoxicity, partly due to cardiomyocyte ferroptosis. However, the progress of developing cardioprotective medications to counteract ferroptosis has encountered obstacles. Protosappanin A (PrA), an anti-inflammatory compound derived from hematoxylin, shows potential against DOX-induced cardiomyopathy (DIC). Here, it is reported that PrA alleviates myocardial damage and dysfunction by reducing DOX-induced ferroptosis and maintaining mitochondrial homeostasis. Subsequently, the molecular target of PrA through proteome microarray, molecular docking, and dynamics simulation is identified. Mechanistically, PrA physically binds with ferroptosis-related proteins acyl-CoA synthetase long-chain family member 4 (ACSL4) and ferritin heavy chain 1 (FTH1), ultimately inhibiting ACSL4 phosphorylation and subsequent phospholipid peroxidation, while also preventing FTH1 autophagic degradation and subsequent release of ferrous ions (Fe2+) release. Given the critical role of ferroptosis in the pathogenesis of ischemia-reperfusion (IR) injury, this further investigation posits that PrA can confer a protective effect against IR-induced cardiac damage by inhibiting ferroptosis. Overall, a novel pharmacological inhibitor is unveiled that targets ferroptosis and uncover a dual-regulated mechanism for cardiomyocyte ferroptosis in DIC, highlighting additional therapeutic options for chemodrug-induced cardiotoxicity and ferroptosis-triggered disorders.

2.
J Colloid Interface Sci ; 675: 646-659, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38991279

RESUMO

HYPOTHESIS: Poor storage stability and oxidative deterioration are the common drawbacks of edible oils rich in polyunsaturated fatty acids (PUFAs). We hypothesized that the natural zein/tannic acid self-assembly nanoparticles (ZT NPs) could be employed as stabilizers to anchor at the oil-water interface, thus constructing Pickering emulsion gel (PKEG) system for three types of PUFA-rich oils, soybean oil (SO), fish oil (FO) and cod liver oil (CLO), to improve the storage and oxidation stability. EXPERIMENTS: ZT NPs were prepared by the anti-solvent coprecipitation method, and the three-phase contact angle, FT-IR, and XRD were mainly characterized. To observe the shell-core structure and oil-water interface details of SO/FO/CLO PKEGs by confocal laser scanning microscope and cryo-scanning electron microscope. Accelerated oxidation of FO was performed to assess the protective effect of PKEG on lipids. FINDINGS: The SO, FO, and CLO PKEGs stabilized by 2 % ZT NPs, with oil fraction (φ = 0.5-0.6), were obtained. PKEGs show high viscoelasticity, clear shell-core structure spatial network structure, and ideal storage stability. Under accelerated oxidation, the degree of oxidative rancidity of FO PKEG was obviously lower than that of free FO. Overall, this work opens up new possibilities for using natural PKEG to prevent oxidative deterioration and prolong the shelf-life of PUFA-rich oils.

3.
Poult Sci ; 103(9): 103991, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991387

RESUMO

The S2 subunit of infectious bronchitis virus (IBV) is a heavily glycosylated protein that can impact various characteristics of the virus. It is currently known that N-glycosylation modifications are predominantly located on the S2 subunit. However, the exact role of their N-glycosylation modification remains undisclosed. To elucidate the function of these N-glycosylation sites, we identified 14 common sites distributed on the S2 subunit of the 5 genotypes of IBV in present study. Subsequently, we selected 7 sites to generate mutants and assessed their impact on viral virulence, replication ability, and antigenicity. Our finding revealed that only 2 substitutions, N545S and K717N, increased the viral replication titer and antigenicity, and ultimately the pathogenicity in chicks. To delve into the mechanisms underlying this increased pathogenicity, we discovered that K717N can change the structure of antigenic epitopes. The N545S substitution not only influenced antigenic epitope structure, but also enhanced the ability of the virus to enter CEKs during the early stages of viral replication. These results suggest that the enhanced viral pathogenicity associated with N545S and K717N substitutions is multifaceted, with acceleration of the viral membrane fusion process and alterations in epitope structure representing crucial factors in the capability of N-glycosylation modifications to boost viral virulence. These insights provide valuable guidance for the efficient development of live attenuated vaccines.

4.
Cancer Lett ; 598: 217093, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969160

RESUMO

Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.

5.
Heliyon ; 10(12): e32816, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975197

RESUMO

Metagenomic next-generation sequencing (mNGS) has revolutionized the detection of pathogens, particularly in immunocompromised individuals such as pediatric patients undergoing intensive chemotherapy and hematopoietic stem cell transplantation. This study aims to explore the impact of neutrophil count on the diagnostic efficacy of mNGS in diagnosing infections in pediatric patients with febrile diseases. We conducted a retrospective analysis of pediatric patients with febrile diseases in the hematology/oncology department from January 2019 to September 2022. The study included 387 patients with 516 febrile episodes. Analyzing data from 516 pediatric cases, our study found that 70.7 % had febrile neutropenia (FN) and 29.3 % had febrile without neutropenia (FWN). mNGS demonstrated a high positive detection rate of 84.9 %, compared to 29.7 % for conventional microbiological tests (CMT). While the positive detection rates of mNGS were similar in both FN and FWN groups, bacterial pathogens were more frequently detected in FN patients. Furthermore, the rate of identifying a "probable" microbial etiology was lower in the FN group (46.8 %) compared to the FWN group (65.6 %, p<0.001). When analyzing the types of organisms and specimens, the "probable" identification rates were particularly lower for viruses and fungi detected by mNGS, as well as in blood and nasopharyngeal swab samples. These findings underscore the significant influence of neutrophil counts on mNGS results in pediatric febrile patients and highlight the necessity for tailored diagnostic approaches in this population.

6.
World J Gastrointest Oncol ; 16(6): 2439-2448, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994131

RESUMO

BACKGROUND: The liver imaging reporting and data system (LI-RADS) diagnostic table has 15 cells and is too complex. The diagnostic performance of LI-RADS for hepatocellular carcinoma (HCC) is not satisfactory on gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI). AIM: To evaluate the ability of the simplified LI-RADS (sLI-RADS) to diagnose HCC on EOB-MRI. METHODS: A total of 331 patients with 356 hepatic observations were retrospectively analysed. The diagnostic performance of sLI-RADS A-D using a single threshold was evaluated and compared with LI-RADS v2018 to determine the optimal sLI-RADS. The algorithms of sLI-RADS A-D are as follows: The single threshold for sLI-RADS A and B was 10 mm, that is, classified observations ≥ 10mm using an algorithm of 10-19 mm observations (sLI-RADS A) and ≥ 20 mm observations (sLI-RADS B) in the diagnosis table of LI-RADS v2018, respectively, while the classification algorithm remained unchanged for observations < 10 mm; the single threshold for sLI-RADS C and D was 20 mm, that is, for < 20 mm observations, the algorithms for < 10 mm observations (sLI-RADS C)and 10-19 mm observations (sLI-RADS D) were used, respectively, while the algorithm remained unchanged for observations ≥ 20 mm. With hepatobiliary phase (HBP) hypointensity as a major feature (MF), the final sLI-RADS (F-sLI-RADS) was formed according to the optimal sLI-RADS, and its diagnostic performance was evaluated. The times needed to classify the observations according to F-sLI-RADS and LI-RADS v2018 were compared. RESULTS: The optimal sLI-RADS was sLI-RADS D (with a single threshold of 20 mm), because its sensitivity was greater than that of LI-RADS v2018 (89.8% vs 87.0%, P = 0.031), and its specificity was not lower (89.4% vs 90.1%, P > 0.999). With HBP hypointensity as an MF, the sensitivity of F-sLI-RADS was greater than that of LI-RADS v2018 (93.0% vs 87.0%, P < 0.001) and sLI-RADS D (93.0% vs 89.8%, P = 0.016), without a lower specificity (86.5% vs 90.1%, P = 0.062; 86.5% vs 89.4%, P = 0.125). Compared with that of LI-RADS v2018, the time to classify lesions according to F-sLI-RADS was shorter (51 ± 21 s vs 73 ± 24 s, P < 0.001). CONCLUSION: The use of sLI-RADS with HBP hypointensity as an MF may improve the sensitivity of HCC diagnosis and reduce lesion classification time.

7.
Curr Med Imaging ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988164

RESUMO

OBJECTIVE: Utilizing ultrasound radiomics, we developed a machine learning (ML) model to construct a nomogram for the non-invasive evaluation of glomerular status in diabetic kidney disease (DKD). MATERIALS AND METHODS: Patients with DKD who underwent renal biopsy were retrospectively enrolled between February 2017 and February 2023. The patients were classified into mild or moderate-severe glomerular severity based on pathological findings. All patients were randomly divided into a training (n =79) or testing cohort (n = 35). Radiomic features were extracted from ultrasound images, and a logistic regression ML algorithm was applied to construct an ultrasound radiomic model after selecting the most significant features using univariate analysis and the least absolute shrinkage and selection operator algorithm (LASSO). A clinical model was created following univariate and multivariate logistic regression analyses of the patient's clinical characteristics. Then, the clinical-radiomic model was constructed by combining rad scores and independent clinical characteristics and plotting the nomogram. The receiver operating characteristic curve (ROC) and decision curve analysis (DCA), respectively, were used to evaluate the prediction abilities of the clinical model, ultrasound-radiomics model, and clinical-radiomics model. RESULTS: A total of 114 DKD patients were included in the study, including 43 with mild glomerulopathy and 71 with moderate-severe glomerulopathy. The area under the curve (AUC) for the clinical model based on clinical features and the radiomic model based on 2D ultrasound images in the testing cohort was 0.729 and 0.761, respectively. Further, the AUC for the clinical-radiomic nomogram was constructed by combining clinical features, and the rad score was 0.850 in the testing cohort. The outcomes were better than those of both the radiomic and clinical single-model approaches. CONCLUSION: The nomogram constructed by combining ultrasound radiomics and clinical features has good performance in assessing the glomerular status of patients with DKD and will help clinicians monitor the progression of DKD.

.

8.
Cell Rep ; 43(7): 114458, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996070

RESUMO

Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39044022

RESUMO

Dynamic functional network connectivity (dFNC) is an expansion of static FNC (sFNC) that reflects connectivity variations among brain networks. This study aimed to investigate changes in sFNC and dFNC strength and temporal properties in individuals with subthreshold depression (StD). Forty-two individuals with subthreshold depression and 38 healthy controls (HCs) were included in this study. Group independent component analysis (GICA) was used to determine target resting-state networks, namely, executive control network (ECN), default mode network (DMN), sensorimotor network (SMN) and dorsal attentional network (DAN). Sliding window and k-means clustering analyses were used to identify dFNC patterns and temporal properties in each subject. We compared sFNC and dFNC differences between the StD and HCs groups. Relationships between changes in FNC strength, temporal properties, and neurophysiological score were evaluated by Spearman's correlation analysis. The sFNC analysis revealed decreased FNC strength in StD individuals, including the DMN-CEN, DMN-SMN, SMN-CEN, and SMN-DAN. In the dFNC analysis, 4 reoccurring FNC patterns were identified. Compared to HCs, individuals with StD had increased mean dwell time and fraction time in a weakly connected state (state 4), which is associated with self-focused thinking status. In addition, the StD group demonstrated decreased dFNC strength between the DMN-DAN in state 2. sFNC strength (DMN-ECN) and temporal properties were correlated with HAMD-17 score in StD individuals (all p < 0.01). Our study provides new evidence on aberrant time-varying brain activity and large-scale network interaction disruptions in StD individuals, which may provide novel insight to better understand the underlying neuropathological mechanisms.

10.
Food Chem ; 457: 140425, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39043069

RESUMO

The purpose of this study was to clarify effects of water changes on the quality and volatile compounds of Penaeus monodon during frozen storage. The content of immobilized water decreased significantly while the bound water and free water increased significantly. Total sulfhydryl content, and Ca2+-ATPase activity decreased significantly to 68.31 µmol/g and 0.127 U/mg, meantime, carbonyl content and MFI value increased significantly to 2.04 µmol/g prot and 55.10. Total of 50 volatile compounds were identified. Nonanal (M & D), 2-nonanone and octanal were only detected in fresh samples, while 3-hydroxy-2-butanone and 1-hydroxy-2-propanone were only found in the samples after 20 days of storage. Correlation analysis revealed that 6 of the volatile compounds were associated with the change of free water. Total of 28 and 17 volatile compounds showed significant correlations with the immobilized water and bound water, respectively. Four volatile compounds have the potential to be used as the flavor marker.

11.
Nutrients ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999906

RESUMO

Obesity is an unhealthy condition associated with various diseases characterized by excess fat accumulation. However, in China, the prevalence of obesity is 14.1%, and it remains challenging to achieve weight loss or resolve this issue through clinical interventions. Sanghuangpours vaninii (SPV) is a nutritional fungus with multiple pharmacological activities and serves as an ideal dietary intervention for combating obesity. In this study, a long-term high-fat diet (HFD) was administered to induce obesity in mice. Different doses of SPV and the positive drug simvastatin (SV) were administered to mice to explore their potential anti-obesity effects. SPV regulated weight, serum lipids, and adipocyte size while inhibiting inflammation and hepatic steatosis. Compared with the vehicle-treated HFD-fed mice, the lowest decreases in total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were 9.72%, 9.29%, and 12.29%, respectively, and the lowest increase in high-density lipoprotein cholesterol (HDL-C) was 5.88% after treatment with different doses of SPV. With SPV treatment, the analysis of gut microbiota and serum lipids revealed a significant association between lipids and inflammation-related factors, specifically sphingomyelin. Moreover, Western blotting results showed that SPV regulated the toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in HFD-diet mice, which is related to inflammation and lipid metabolism. This research presents empirical proof of the impact of SPV therapy on obesity conditions.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Inflamação , Camundongos Endogâmicos C57BL , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Fármacos Antiobesidade/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Lipídeos/sangue , NF-kappa B/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico
12.
Chem Commun (Camb) ; 60(59): 7590-7593, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38952151

RESUMO

VN usually has poor rate performance and cycle stability. In this work, porous VN nanosheet arrays were prepared on carbon nanofibers embedded with Ti3C2Tx nanosheets by electrospinning and chemical vapor deposition. The 3D network accelerates the transfer of electrons and electrolyte ions, prevents the aggregation of VN and the self-stacking of MXene, and enhances cycle stability. The solid-state flexible device comprising Co3O4, MXCF@VN, and KOH/PVA exhibits exceptional energy densities of 83.95 W h kg-1 and robust cycling stability (82.8% retention after 20 000 cycles).

13.
Nat Commun ; 15(1): 5678, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971858

RESUMO

Inherited non-hemolytic anemia is a group of rare bone marrow disorders characterized by erythroid defects. Although concerted efforts have been made to explore the underlying pathogenetic mechanisms of these diseases, the understanding of the causative mutations are still incomplete. Here we identify in a diseased pedigree that a gain-of-function mutation in toll-like receptor 8 (TLR8) is implicated in inherited non-hemolytic anemia. TLR8 is expressed in erythroid lineage and erythropoiesis is impaired by TLR8 activation whereas enhanced by TLR8 inhibition from erythroid progenitor stage. Mechanistically, TLR8 activation blocks annexin A2 (ANXA2)-mediated plasma membrane localization of STAT5 and disrupts EPO signaling in HuDEP2 cells. TLR8 inhibition improves erythropoiesis in RPS19+/- HuDEP2 cells and CD34+ cells from healthy donors and inherited non-hemolytic anemic patients. Collectively, we identify a gene implicated in inherited anemia and a previously undescribed role for TLR8 in erythropoiesis, which could potentially be explored for therapeutic benefit in inherited anemia.


Assuntos
Anemia , Eritropoese , Receptor 8 Toll-Like , Humanos , Eritropoese/genética , Receptor 8 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Feminino , Anemia/genética , Masculino , Linhagem , Eritropoetina/metabolismo , Eritropoetina/genética , Adulto , Transdução de Sinais , Mutação , Células Eritroides/metabolismo , Animais , Células Precursoras Eritroides/metabolismo
14.
Int J Nanomedicine ; 19: 6857-6893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005956

RESUMO

Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.


Assuntos
Nanopartículas , Periodontite , Humanos , Periodontite/terapia , Periodontite/tratamento farmacológico , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanomedicina/métodos
15.
World J Gastroenterol ; 30(25): 3132-3139, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39006380

RESUMO

In this editorial, we comment on the article by Chen et al. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a global public health burden whose incidence has risen concurrently with overweight and obesity. Given its detrimental health impact, early identification of at-risk individuals is crucial. MAFLD diagnosis is based on evidence of hepatic steatosis indicated by liver biopsy, imaging, or blood biomarkers, and one of the following conditions: Overweight/ obesity, type 2 diabetes mellitus, or metabolic dysregulation. However, in large-scale epidemiological studies, liver biopsies are not feasible. The application of techniques such as ultrasonography, computed tomography, magnetic resonance imaging, and magnetic resonance spectroscopy is restricted by their limited sensitivity, low effectiveness, high costs, and need for specialized software. Blood biomarkers offer several advantages, particularly in large-scale epidemiological studies or clinical scenarios where traditional imaging techniques are impractical. Analysis of cumulative effects of excess high-normal blood alanine aminotransferase (ALT) levels of blood ALT levels could facilitate identification of at-risk patients who might not be detected through conventional imaging methods. Accordingly, investigating the utility of blood biomarkers in MAFLD should enhance early detection and monitoring, enabling timely intervention and management and improving patient outcomes.


Assuntos
Alanina Transaminase , Biomarcadores , Humanos , Biomarcadores/sangue , Alanina Transaminase/sangue , Fígado/diagnóstico por imagem , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Fatores de Risco , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diagnóstico Precoce
17.
Int J Biol Macromol ; : 133865, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019356

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorder. Polysaccharides have been scientifically demonstrated to possess neuroprotective properties. In this study, a polysaccharide was isolated from the fruiting bodies of Hericium coralloides using hot water extraction and purified using column chromatography. This H. coralloides polysaccharide (HCP) is a galactan with a main chain of →6)-α-d-Galp-(1 → and a molecular weight of 16.06 kDa. The partial α-l-Fucp-(1 → substitution takes place at its O-2 position. The neuroprotective effects of HCP were investigated in an APP/PS1 mouse model of Alzheimer's disease. The step-down and Morris water maze tests demonstrated that HCP effectively ameliorated cognitive impairment. After 8-week treatment, HCP reduced amyloid-ß plaques and phosphorylated tau protein deposition. In combination with the gut microbiota and metabolites, proteomic analysis suggested that the neuroprotective effects of HCP are associated with neuroinflammation and autophagy. Immunofluorescence and western blotting analyses confirmed that HCP facilitated the polarization of M2 microglia by augmenting autophagy flux, thereby effectively reducing levels of amyloid-ß plaques and neuroinflammation. These data demonstrate that HCP effectively mitigates neuroinflammation by enhancing autophagic flux, demonstrating its potential for the treatment of AD.

18.
Chem Sci ; 15(28): 11043-11052, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027310

RESUMO

The biomass-derived HMF oxidation reaction (HMFOR) holds great promise for sustainable production of fine chemicals. However, selective electrooxidation of HMF to high value-added intermediate product 5-formyl-furan-2-formic acid (FFCA) is still challenging. Herein, we report the electrocatalytic HMFOR to selectively produce FFCA using carbon paper (CP) supported polyaniline (PANI) as a catalyst. The PANI/CP non-metallic hybrid catalyst with moderate oxidation capacity exhibitsoptimized FFCA selectivity up to 76% in alkaline media, which has reached the best performance in reported literature studies. Identification and quantification of active sites for the HMFOR are further realized via linking the activity to structural compositions of PANI; both polaronic-type nitrogen (N3) and positively charged nitrogen (N4) species are proved responsible for adsorption and activation of HMF, and the intrinsic activity of N4 is higher than that of N3. The present work provides new physical-chemical insights into the mechanism of the HMFOR on non-metallic catalysts, paving the way for the establishment of structure-function relations and further development of novel electrochemical synthesis systems.

19.
Cell Mol Immunol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030423

RESUMO

Sterile neuroinflammation is a major driver of multiple neurological diseases. Myelin debris can act as an inflammatory stimulus to promote inflammation and pathologies, but the mechanism is poorly understood. Here, we showed that lysophosphatidylserine (LysoPS)-GPR34 axis played a critical role in microglia-mediated myelin debris sensing and the subsequent neuroinflammation. Myelin debris-induced microglia activation and proinflammatory cytokine expression relied on its lipid component LysoPS. Both myelin debris and LysoPS promoted microglia activation and the production of proinflammatory cytokines via GPR34 and its downstream PI3K-AKT and ERK signaling. In vivo, reducing the content of LysoPS in myelin or inhibition of GPR34 with genetic or pharmacological approaches reduced neuroinflammation and pathologies in the mouse models of multiple sclerosis and stroke. Thus, our results identify GPR34 as a key receptor to sense demyelination and CNS damage and promote neuroinflammation, and suggest it as a potential therapeutic target for demyelination-associated diseases.

20.
Clin Chim Acta ; 562: 119879, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029646

RESUMO

BACKGROUND: The diagnostic utility of cerebrospinal fluid (CSF) cytology encounters impediments stemming from variability in cell collection techniques and pathologists' morphological acumen, resulting in wide-ranging CSF positivity rates for primary central nervous system lymphomas (PCNSL). Such disparity impacts patient evaluation, treatment stratagem, and prognostication. Thus, this study endeavors to explore liquid biomarkers complementary to CSF cytology or immunophenotype analysis in the diagnosis of CSF involvement. METHODS: 398 newly diagnosed PCNSL patients were categorized into CSF involvement and non-involvement groups based on CSF cytology and immunophenotype analysis. Binary logistic regression analysis was performed on 338 patients to investigate factors predicting CSF involvement and to develop a joint prediction model. An additional cohort of 60 PCNSL patients was recruited for model validation. Statistical analyses included the Mann-Whitney U test for comparing various CSF parameters between two groups. ROC curve analyses were performed for each biomarker to identify PCNSL CSF involvement. RESULTS: The cytokine IL-10 level in CSF has emerged as the most promising biomarker for CSF evaluation, boasting an ROC AUC of 0.922. C-TNFα and soluble C-IL2R demonstrate efficacy in quantifying tumor burden within the CSF. Logistic regression identified C-IL10lg (OR = 30.103, P < 0.001), C-TNC (OR = 1.126, P < 0.001), C-IL2Rlg (OR = 3.743, P = 0.029) as independent predictors for CSF involvement, contributing to a joint predictive model with an AUC of 0.935, sensitivity of 74.1 %, and specificity of 93.0 %. Validation of the model in an independent cohort confirmed its effectiveness, achieving an AUC of 0.9713. CONCLUSIONS: The identification of these feasible biomarkers and the development of an accurate prediction model may facilitate the precise evaluation of CSF status in PCNSL, offering significant advancements in patient management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA