Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.405
Filtrar
1.
Pharmacogenomics J ; 24(3): 11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594235

RESUMO

OBJECTIVE: To investigate factors affecting the efficacy and tolerability of verapamil for migraine prevention using individual pharmacogenomic phenotypes. BACKGROUND: Verapamil has a wide range of dosing in headache disorders without reliable tools to predict the optimal doses for an individual. METHODS: This is a retrospective chart review examining adults with existing pharmacogenomic reports at Mayo Clinic who had used verapamil for migraine. Effects of six cytochrome P450 phenotypes on the doses of verapamil for migraine prevention were assessed. RESULTS: Our final analysis included 33 migraine patients (82% with aura). The mean minimum effective and maximum tolerable doses of verapamil were 178.2(20-320) mg and 227.9(20-480) mg. A variety of CYP2C9, CYP2D6, and CYP3A5 phenotypes were found, without significant association with the verapamil doses after adjusting for age, sex, body mass index, and smoking status. CONCLUSIONS: We demonstrated a wide range of effective and tolerable verapamil doses used for migraine in a cohort with various pharmacogenomic phenotypes.

2.
Cancer Cell Int ; 24(1): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594722

RESUMO

Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.

4.
BMJ Open ; 14(4): e081131, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580356

RESUMO

OBJECTIVES: Triglyceride (TG), triglyceride-glucose index (TyG), body mass index (BMI), TyG-BMI and triglyceride to high-density lipoprotein ratio (TG/HDL) have been reported to be reliable predictors of non-alcoholic fatty liver disease. However, there are few studies on potential predictors of non-alcoholic fatty pancreas disease (NAFPD). Our aim was to evaluate these and other parameters for predicting NAFPD. DESIGN: Cross-sectional study design. SETTING: Physical examination centre of a tertiary hospital in China. PARTICIPANTS: This study involved 1774 subjects who underwent physical examinations from January 2016 to September 2016. PRIMARY AND SECONDARY OUTCOME MEASURES: From each subject, data were collected for 13 basic physical examination and blood biochemical parameters: age, weight, height, BMI, TyG, TyG-BMI, high-density lipoprotein (HDL), low-density lipoprotein, total cholesterol, TG, fasting plasma glucose, TG/HDL and uric acid. NAFPD was diagnosed by abdominal ultrasonography. A logistic regression model with a restricted cubic spline was used to evaluate the relationship between each parameter and NAFPD. The receiver operating characteristic (ROC) curve was used to calculate the area under the curve for each parameter. RESULTS: HDL was negatively correlated with NAFPD, height was almost uncorrelated with NAFPD and the remaining 11 parameters were positively correlated with NAFPD. ROC curve showed that weight-related parameters (weight, BMI and TyG-BMI) and TG-related parameters (TyG, TG and TG/HDL) had high predictive values for the identification of NAFPD. The combinations of multiple parameters had a better prediction effect than a single parameter. All the predictive effects did not differ by sex. CONCLUSIONS: Weight-related and TG-related parameters are good predictors of NAFPD in all populations. BMI showed the greatest predictive potential. Multiparameter combinations appear to be a good way to predict NAFPD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Pancreatopatias , Humanos , Estudos Transversais , Biomarcadores , Glicemia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Triglicerídeos , Glucose , HDL-Colesterol , Pâncreas
5.
Transl Androl Urol ; 13(3): 383-396, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38590969

RESUMO

Background: Papillary renal neoplasm with reverse polarity (PRNRP) is a novel entity with unique clinicopathological characteristics, and only a small number of patients with PRNRP have been described. Methods: We retrospectively analyzed the data for nine patients with PRNRP and evaluated differences in the clinical, histomorphological, immunohistochemical, and molecular features; prognosis; and differential diagnosis of PRNRP from other renal tumors with papillary structure. Results: There were six males and three females aged 36 to 74 years (mean: 62.33 years; median: 68 years). All the tumors were solitary and ranged from 1 to 3.7 cm (mean: 2.17 cm; median: 2 cm), with three and six tumors arose in the left and right renal tract, respectively. Pathologically, PRNRP is a small, well-circumscribed neoplasm with predominant papillary formations. The lining epithelium is composed of a monolayer of cuboidal to low-columnar cells with low-grade nuclei arranged against the apical pole of the tumor cells. Edema, mucinous degeneration, and hyaline degeneration are found in the fibrovascular cores. Foamy macrophages, psammoma bodies, hemosiderin deposition, and infiltrative tumor boundaries were present in some patients. Immunohistochemically, all tumors showed diffuse positive staining for GATA3. Sanger sequencing confirmed the presence of KRAS mutation in seven patients. All patients had a good prognosis after surgery and were relapse free. Positive staining for GATA3 and negative staining for vimentin were the most significant markers for differentiating PRNRP from other renal tumors with analogous structure. Conclusions: These findings suggested that PRNRP is a distinctive subtype of renal tumor with specific pathological features and indolent behaviors that should be distinguished from other renal tumors, especially papillary renal cell carcinoma. A monolayer of tumor cells with an inverted nuclear pattern, positive staining for GATA3, and KRAS mutation are essential for pathological diagnosis. Owing to its satisfactory prognosis, the surveillance and follow-up of patients with PRNRP should be additionally formulated.

6.
iScience ; 27(4): 109515, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591010

RESUMO

Transient anoxia causes amnesia and neuronal death. This is attributed to enhanced glutamate release and modeled as anoxia-induced long-term potentiation (aLTP). aLTP is mediated by glutamate receptors and nitric oxide (·NO) and occludes stimulation-induced LTP. We identified a signaling cascade downstream of ·NO leading to glutamate release and a glutamate-·NO loop regeneratively boosting aLTP. aLTP in entothelial ·NO synthase (eNOS)-knockout mice and blocking neuronal NOS (nNOS) activity suggested that both nNOS and eNOS contribute to aLTP. Immunostaining result showed that eNOS is predominantly expressed in vascular endothelia. Transient anoxia induced a long-lasting Ca2+ elevation in astrocytes that mirrored aLTP. Blocking astrocyte metabolism or depletion of the NMDA receptor ligand D-serine abolished eNOS-dependent aLTP, suggesting that astrocytic Ca2+ elevation stimulates D-serine release from endfeet to endothelia, thereby releasing ·NO synthesized by eNOS. Thus, the neuro-glial-endothelial axis is involved in long-term enhancement of glutamate release after transient anoxia.

7.
Angew Chem Int Ed Engl ; : e202404060, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588061

RESUMO

Multi-dimensional force sensing that combines intensity, location, area and the like could gather a wealth of information from mechanical stimuli. Developing materials with force-induced optical and electrical dual responses would provide unique opportunities to multi-dimensional force sensing, with electrical signals quantifying the force amplitude and the luminescence output providing spatial distribution of force. However, the reliance on external power supply and high-energy excitation source brings significant challenges to the applicability of multi-dimensional force sensors. Here we reported the mechanical energy-driven and sunlight-activated materials with force-induced dual responses, and investigated the underlying mechanisms of self-sustainable force sensing. Theoretical analysis and experimental data unraveled that trap-controlled luminescence and interfacial electron transfer play a major role in force-induced optical and electrical output. These materials were manufactured into pressure sensor with renewable dual-mode output for quantifying and visualization of pressures by electrical and optical output, respectively, without power supply and high-energy irradiation. The quantification of tactile sensation and stimuli localization of mice highlighted the multi-dimensional sensing ability of the sensor. Overall, this self-powered pressure sensor with multimodal output provides more modalities of force sensing, poised to change the way that intelligent devices sense with the world.

8.
Bone Res ; 12(1): 21, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561387

RESUMO

Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of HOXD13 in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a Hoxd13Q50R mutant mouse. The mutant mice exhibited obvious limb malformations including slight brachydactyly and partial syndactyly between digits 2-4 in the heterozygotes, and severe syndactyly, brachydactyly and polydactyly in homozygotes. Focusing on BMP2 and SHH/GREM1/AER-FGF epithelial mesenchymal (e-m) feedback, a crucial signal pathway for limb development, we found the ectopically expressed Shh, Grem1 and Fgf8 and down-regulated Bmp2 in the embryonic limb bud at E10.5 to E12.5. A transcriptome sequencing analysis was conducted on limb buds (LBs) at E11.5, revealing 31 genes that exhibited notable disparities in mRNA level between the Hoxd13Q50R homozygotes and the wild-type. These genes are known to be involved in various processes such as limb development, cell proliferation, migration, and apoptosis. Our findings indicate that the ectopic expression of Shh and Fgf8, in conjunction with the down-regulation of Bmp2, results in a failure of patterning along both the anterior-posterior and proximal-distal axes, as well as a decrease in interdigital programmed cell death (PCD). This cascade ultimately leads to the development of syndactyly and brachydactyly in heterozygous mice, and severe limb malformations in homozygous mice. These findings suggest that abnormal expression of SHH, FGF8, and BMP2 induced by HOXD13Q50R may be responsible for the manifestation of human SDTY5.


Assuntos
Braquidactilia , Deformidades Congênitas dos Membros , Sindactilia , Camundongos , Humanos , Animais , Proteínas Hedgehog/genética , Fatores de Transcrição/genética , Sindactilia/genética
9.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572553

RESUMO

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

10.
Phys Chem Chem Phys ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573245

RESUMO

The L2,3-edge X-ray absorption spectra of late transition metals such as Cu, Ag, and Au exhibit absorption onsets lower in energy for higher oxidation states, which is at odds with the measured spectra of earlier transition metals. Time-dependent density functional theory calculations for Cu2+/Cu+ reveal a larger 2p core-exciton binding energy for Cu2+, overshadowing shifts in single-particle excitation energies with respect to Cu+. We explore this phenomenon in a Cu+ metal-organic framework with ∼12% Cu2+ defects and find that corrections with self-consistent excited-state total energy differences provide accurate XAS peak alignment.

11.
J Nutr Biochem ; : 109638, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583499

RESUMO

Maternal infection during pregnancy is an important cause of autism spectrum disorder (ASD) in offspring, and inflammatory infiltration caused by maternal immune activation (MIA) can cause neurodevelopmental disorders in the fetus. Medicine food homologous (MFH) refers to a Traditional Chinese Medicine (TCM) concept, which effectively combines food functions and medicinal effects. However, no previous study has screened, predicted, and validated the potential targets of MFH herbs for treating ASD. Therefore, in this study, we used comprehensive bioinformatics methods to screen and analyze MFH herbs and drug targets on a large scale, and identified resveratrol and Thoc5 as the best small molecular ingredient and drug target, respectively, for the treatment of MIA-induced ASD. Additionally, the results of in vitro experiments revealed that resveratrol increased the expression of Thoc5 and effectively inhibited lipopolysaccharide-induced inflammatory factor production by BV2 cells. Moreover, in vivo, resveratrol increased the expression of Thoc5 and effectively inhibited placental and fetal brain inflammation in MIA pregnancy mice, and improved ASD-like behaviors in offspring.

12.
Adv Sci (Weinh) ; : e2307953, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582517

RESUMO

FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.

13.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568844

RESUMO

Tobacco (Nicotiana tabacum L.) belongs to the family Solanaceae, an economically significant crop (Zhou et al. 2023). Twelve samples with leaf spots were collected in Keti Village, Changshun County, Zunyi City, Guizhou province, China in 2022. Twenty-five percent of the samples had dry lesions near the leaf tip which resulted leaf tip blight after development. Fungi were isolated by a previous method (Wei et al. 2022). Six Alternaria strains were obtained and preserved in the Fungal Herbarium of Yangtze University (YZU), Jingzhou, Hubei, China. Among them, one strain YZU 221477 showed distinct cultural characteristics out of five A. alternata strains, which was again determined by growing on potato dextrose agar (PDA) at 25°C for 7 days in dark to evaluate. The colonies (60 mm in diameter) were white cottony in the center surrounded by vinaceous purple. To examine the morphology, mycelia were inoculated onto potato carrot agar (PCA) at 22°C, following an 8 h light/16 h dark photoperiod (Simmons 2007). Conidia were obclavate or ovoid, normally 3-5 conidial units per chain, 20-38 × 10-16.5 µm, 3 to 5 transverse septa, beakless or a short beak (4-30 µm). The observation results were consistent with those of A. gossypina (Zhang 2003). Total genomic DNA was extracted using the CTAB method and seven gene regions including internal transcribed spacer of rDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1 alpha (TEF1), RNA polymerase second largest subunit (RPB2), Alternaria major allergen gene (Alt a 1), endopolygalacturonase (EndoPG) and an anonymous gene region (OPA10-2) were amplified with ITS5/ITS4, gpd1/gpd2, EF1-728F/EF1-986R, RPB2-5F/RPB2-7cR, Alt-for/Alt-rev, PG3/PG2b and OPA10-2L/OPA10-2R primers, respectively. All sequences were deposited in GenBank (ITS: OR710806; GAPDH: PP057862; TEF1: PP158601; RPB2: PP057863; Alt a 1: PP057865; EndoPG: PP057861; OPA10-2: PP057864). Combining with relevant sequences retrieved from the NCBI database were used for the phylogenetic analysis. Maximum Likelihood (ML) tree was constructed with RAxML v.7.2.8 employing GTRCAT model using 1000 bootstrap (BS) replicates to assess statistical support. The results indicated that the present strain grouped with A. gossypina (type strain of CBS 104.32) supported with 73% bootstrap values, also having a support of 0.83 Bayesian posterior probabilities values. Based on morphology and molecular evidence, the strain YZU 221477 is identified as Alternaria gossypina. Pathogenicity was examined to fulfill Koch's postulates. Mycelial plugs (6 mm diameter) of the present strain and A. alternata cultivated on PDA were taken from the margin and inoculated onto viable tobacco leaves (Cultivar: Yunyan 87, n=3) growing forty days, while controls were inoculated with sterile PDA. The assay was conducted three times. The plants were maintained at 25°C with humidity levels over 85% in a greenhouse. Leaves were evaluated after 7 days, necrotic spots encircled by yellow halos were on both inoculums, except controls. Pathogen re-isolation confirmed that it was the same as inoculated fungus based on morphology. A. gossypina was firstly found on cotton (Hopkins 1931), late reported to induce disease on Minneola, Nopalea, Hibiscus, Citrus, Solanum and Ageratina. To our knowledge, this is the first report of A. gossypina causing tobacco leaf tip blight in China, and it also provides a basis for controlling of tobacco leaf tip blight.

14.
New Phytol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563391

RESUMO

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.

15.
J Evid Based Med ; 17(1): 65-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494781

RESUMO

AIM: Myocarditis is a recognized safety concern following COVID-19 mRNA vaccination. However, there is limited research quantifying the risk associated with the third dose or comparing the risk between the three doses. The US Vaccine Adverse Event Reporting System (VAERS) is a passive surveillance system that monitors rare adverse events after US-licensed vaccination. However, studies analyzing VAERS data have often faced criticism for underreporting cases and lacking a control group to assess the increase in baseline risk. METHODS: The temporal association between myocarditis onset and COVID-19 vaccination was studied. To overcome limitations, a novel modified self-controlled case series method was employed, explicitly modeling the case reporting process in VAERS data. RESULTS: We found an increased risk of myocarditis during the 1- to 3-day period following the second and third doses of both the BNT162b2 vaccine and the mRNA-1273 vaccine. Following the second dose, the relative incidence (RI) was 4.89 (95% confidence interval (CI), 2.39-10.08) for the BNT162b2 vaccine and 2.86 (95% CI: 1.18-7.03) for the mRNA-1273 vaccine. Similarly, following the third dose, the RI was 9.04 (95% CI: 2.79-40.99) for the BNT162b2 vaccine and 4.71 (95% CI: 1.42-19.09) for the mRNA-1273 vaccine. No significant increase in risk was observed during other periods. Notably, our analysis also identified a similar increased risk of myocarditis among individuals aged below 30. CONCLUSIONS: These findings raise safety concerns regarding COVID-19 mRNA vaccines, provide insights into the quantification of myocarditis risk at different postvaccination periods, and offer a novel approach to interpreting passive surveillance system data.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Miocardite , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas de mRNA , Miocardite/epidemiologia , Miocardite/etiologia , Projetos de Pesquisa , Estados Unidos/epidemiologia
16.
Med Sci Monit ; 30: e943049, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553816

RESUMO

BACKGROUND Triple-negative breast cancer (TNBC) is a distinct subtype of breast cancer, accounting for 12-18% of all breast cancer cases. It exhibits high heterogeneity and aggressiveness, resulting in a poorer prognosis with a high risk of early recurrence and metastasis. Due to the lack of expression of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2), as well as insensitivity to endocrine therapy, determining a standard treatment for TNBC is challenging. The identification of potential prognostic biomarkers is crucial for developing personalized treatment strategies for patients. MATERIAL AND METHODS Our study investigated the potential value of HSP90a in TNBC prognosis. A retrospective analysis was conducted on 127 TNBC patients and 127 Healthy controls from March 1, 2019 to July 31, 2022. Venous blood was collected and tested for HSP90alpha, CEA, CA199, and CA125, and we recorded the clinical characteristics of the patients, including age, BMI, alcohol consumption status, surgical history, CEA level, CA199 level, CA125 level, HSP90alpha level, tumor size, distant metastases, lymph node metastasis, and TNM stage. Univariate and multivariate methods were used to screen independent risk factors for progression-free survival (PFS) and overall survival (OS). RESULTS HSP90alpha is not only upregulated in TNBC but is also highly correlated with lymph node metastasis and TNM stage. The results of multivariate analysis showed that distant metastasis, TNM stage and HSP90a level were independent factors associated with PFS. BMI, tumor size, TNM stage, surgical history, and HSP90a level were independent factors influencing OS. CONCLUSIONS Our research findings demonstrate a significant association between high HSP90alpha expression and adverse clinical features, suggesting a poorer prognosis for TNBC patients.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Estudos Retrospectivos , Metástase Linfática , Prognóstico , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/metabolismo
17.
Water Res ; 255: 121534, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38555785

RESUMO

Organics, as widespread pollutants in high-strength ammonia wastewater, typically exert adverse effects on the performance of partial nitrification-anammox (PNA) systems. However, the in-depth knowledge on how microbial consortia respond to these disturbances remains limited. In this study, we unveiled the evolution of complex organic matter flow and its impact on the metabolic hierarchy and adaptation of microbial consortia, employing multi-omics approaches, i.e., 16S amplicon sequencing, metagenomics, and metabolomics. In a two-stage PNA system sequentially treating synthetic wastewater and incineration leachate over 230 days, partial nitrification stayed stable (nitrite accumulation > 97%) while anammox efficiency dropped (nitrogen removal decreased from 86% to 78%). The phenomenon was revealed to be correlated with the evolution of dissolved organic matter (DOM) and xenobiotic organic compounds (XOCs). In the PN stage, ammonia-oxidizing bacteria (AOB) exhibited excellent adaptability through active metabolic regulation after treating leachate. Numerous heterotrophs proliferated to utilize DOM and XOCs, triggering a "boom" state evident in the glycerophospholipid metabolism. However, in the anammox stage, the competition between carbon fixation and central carbon metabolism within autotrophs and heterotrophs became evident. Increased biosynthesis costs inhibited the central metabolism (specific anammox activity decreased by 66%) and the Wood-Ljungdahl pathway of anammox bacteria (AnAOB) in the presence of recalcitrant organics. Additionally, the degradation of organics was limited, exhibiting a "bust" state. This study revealed the metabolic adaption and susceptibility of AOB and AnAOB in response to organics from the leachate, demonstrating the applicability of the two-stage configuration for treating high-strength wastewater containing abundant and diverse organics.

18.
Sci Bull (Beijing) ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556396

RESUMO

Limited evidence exists on the effect of submicronic particulate matter (PM1) on hypertension hospitalization. Evidence based on causal inference and large cohorts is even more scarce. In 2015, 36,271 participants were enrolled in South China and followed up through 2020. Each participant was assigned single-year, lag0-1, and lag0-2 moving average concentration of PM1 and fine inhalable particulate matter ((PM2.5) simulated based on satellite data at a 1-km resolution. We used an inverse probability weighting approach to balance confounders and utilized a marginal structural Cox model to evaluate the underlying causal links between PM1 exposure and hypertension hospitalization, with PM2.5-hypertension association for comparison. Several sensitivity studies and the analyses of effect modification were also conducted. We found that a higher hospitalization risk from both overall (HR: 1.13, 95% CI: 1.05-1.22) and essential hypertension (HR: 1.15, 95% CI: 1.06-1.25) was linked to each 1 µg/m3 increase in the yearly average PM1 concentration. At lag0-1 and lag0-2, we observed a 17%-21% higher risk of hypertension associated with PM1. The effect of PM1 was 6%-11% higher compared with PM2.5. Linear concentration-exposure associations between PM1 exposure and hypertension were identified, without safety thresholds. Women and participants that engaged in physical exercise exhibited higher susceptibility, with 4%-22% greater risk than their counterparts. This large cohort study identified a detrimental relationship between chronic PM1 exposure and hypertension hospitalization, which was more pronounced compared with PM2.5 and among certain groups.

19.
Angew Chem Int Ed Engl ; : e202402726, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494458

RESUMO

Organic photothermal materials have attracted increasing attention because of their structural diversity, flexibility, and compatibility. However, their energy conversion efficiency is limited owing to the narrow absorption spectrum, strong reflection/transmittance, and insufficient nonradiative decay. In this study, two quinoxaline-based D-A-D-A-D-type molecules with ethyl (BQE) or carboxylate (BQC) substituents were synthesized. Strong intramolecular charge transfer provided both molecules with a broad absorption range of 350-1000 nm. In addition, the high reorganization energy and weak molecular packing of BQE resulted in efficient nonradiative decay. More importantly, the self-assembly of BQE leads to a textured surface and enhances the light-trapping efficiency with significantly reduced light reflection/transmittance. Consequently, BQE achieved an impressive solar-thermal conversion efficiency of 18.16 % under 1.0 kW m-2 irradiation with good photobleaching resistance. Based on this knowledge, the water evaporation rate of 1.2 kg m-2 h-1 was attained for the BQE-based interfacial evaporation device with an efficiency of 83 % under 1.0 kW m-2 simulated sunlight. Finally, the synergetic integration of solar-steam and thermoelectric co-generation devices based on BQE was realized without significantly sacrificing solar-steam efficiency. This underscores the practical applications of BQE-based technology in effectively harnessing photothermal energy. This study provides new insights into the molecular design for enhancing light-trapping management by molecular self-assembly, paving the way for photothermal-driven applications of organic photothermal materials.

20.
Int J Biochem Cell Biol ; 170: 106569, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38556159

RESUMO

Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...