Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.506
Filtrar
1.
Interdiscip Sci ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259999

RESUMO

With the proliferation of IoMT (Internet of Medical Things), billions of connected medical devices are constantly producing oceans of time series sensor data, dubbed as time series for short. Considering these time series reflect various functional states of the human body, how to effectively detect the corresponding abnormalities is of great significance for smart healthcare. Accordingly, we develop a horizontal visibility graph-based temporal classification model for disease diagnosis. We conduct extensive comparison experiments on the benchmark datasets to justify the superiority of our method in term of accuracy and efficiency. Besides, we have released the codes and parameters to facilitate the community research. We propose an identifiable temporal feature selection via horizontal visibility graph for time series classification (TSC) based disease diagnosis. We conduct comparison experiments on the benchmark datasets to justify the superiority of our method in term of accuracy and efficiency. As a side contribution, we have released the codes and parameters to facilitate the community research ( https://github.com/sdujicun/SSVG ).

2.
J Mater Chem B ; 9(28): 5691-5697, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34212172

RESUMO

The formation of natural structures found in biological systems is wonderful and can be completed at ambient temperatures in contrast to artificial technologies wherein harsh conditions are common prerequisites. A new research direction, "bioprocess inspired manufacturing", is proposed for fabricating advanced materials with novel structures and functions. Nacre consists of an ordered multilayer structure of crystalline calcium carbonate lamellae separated by organic layers exhibiting mechanical toughness, which transcends that of its constituent components. Inspired by the nacre formation process, a microscale additive manufacturing mineralization method is proposed for achieving a multilayered organic-inorganic layered structure. In this work, layered calcite was synthesized on the surface of chitosan (CS) films at room temperature under the coordinated control of magnesium ions (Mg2+) and polyacrylic acid (PAA). The CS films and layered calcite are sequentially assembled in a layer-by-layer deposition approach to form an organic-inorganic hybrid structure. The nacre-like chitosan/CaCO3 (CS/CaCO3) composites exhibit high transparency and underwater superoleophobicity. Impressively, the hardness (2.35 ± 0.03 GPa) and Young's modulus (58.1 ± 0.5 GPa) of the as-prepared (CS/CaCO3) composites are comparable to those of their biological counterparts. This study provides a rational bioprocess-inspired room-temperature mineralization method to develop advanced composite materials with good performance.

3.
J Cell Physiol ; 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34270095

RESUMO

Beta 1,4-galactosyltransferase (B4GALT)-family glycosyltransferases are involved in multiple biological processes promoting cancer progression, regulating the dynamic network of cancer cell proliferation and apoptosis, and are associated with metastasis. However, their roles in the dysregulation of expressions and functions in hepatocellular carcinoma (HCC) remain unclear. Herein, bioinformatic approaches have been applied to investigate their expression profiles, and to obtain correlations between gene expressions and clinicopathological parameters as well as downstream target genes in HCC. Multiple databases were used to screen the expressions of B4GALT family members in tumor tissues, and to evaluate their prognostic value among HCC patients in different aspects. Results indicated an overall upregulation of B4GALTs' transcription levels in tumor tissues and a strong correlation with poor prognosis. Through Gene Ontology analysis, gene set enrichment analysis, and verification of single-cell RNA sequencing data, we established a connection between the B4GALT family and microtubule spindle assembly, which particularly highlighted the role of B4GALT4 in this phenomenon. B4GALT4 knockdown downregulated the production of lumican, and repressed the expressions of polo-like kinase 1 and RHAMM by regulating the transforming growth factor-beta pathway, thus suggesting that B4GALT4 is a critical promotor for HCC. We believe that these studies will provide valuable insight into the role of B4GALT family members in HCC and lead to the development of new strategies to improve the outcomes for patients with HCC.

4.
Global Spine J ; : 21925682211031175, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263657

RESUMO

STUDY DESIGN: Retrospective analysis. OBJECTIVE: We investigated whether complete correction of cervical sagittal malalignment is necessary during 4-level anterior cervical discectomy and fusion (ACDF) in patients with kyphosis. METHODS: This retrospective study included 84 patients who underwent 4-level ACDF surgery at a university hospital between January 2010 and December 2015. Based on the degree of cervical lordosis correction, patients were categorized into the following groups: mild (0-10°), moderate (10-20°), and complete correction (>20°). The clinical outcomes, radiological parameters, and functional outcomes were analyzed. RESULTS: We observed no significant intergroup differences in the baseline characteristics. The cervical sagittal vertical axis (CSVA) correction loss at the final follow-up was lesser in the mild- and moderate- than in the complete-correction group. The spinocranial angle (SCA) and T1 slope (T1 S) were significantly higher in the moderate- and complete-correction groups than in the mild-correction group, 3 days postoperatively. The cervical proximal junctional kyphosis (CPJK), adjacent segment degeneration (ASD), and ASD following CPJK rates were higher in the complete-correction group. We observed no significant intergroup differences in postoperative complications; however, 5 patients showed internal fixation failure in the complete-correction group; 4 of these patients required reoperation. No significant intergroup difference was observed in the Japanese Orthopedic Association and neck disability index scores at any time point. CONCLUSIONS: A mild-to-moderate correction of cervical lordosis is superior to complete correction in patients with kyphosis who undergo 4-level ACDF because this approach is associated with lesser axial stress and CSVA correction loss.

5.
Oxid Med Cell Longev ; 2021: 5584447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239691

RESUMO

Intervertebral disc degeneration (IDD) is the primary culprit of low back pain and renders heavy social burden worldwide. Pyroptosis is a newly discovered form of programmed cell death, which is also involved in nucleus pulposus (NP) cells during IDD progression. Moderate autophagy activity is critical for NP cell survival, but its relationship with pyroptosis remains unknown. This study is aimed at investigating the relationship between autophagy and pyroptotic cell death. The pyroptosis executor N-terminal domain of gasdermin D (GSDMD-N) and inflammation-related proteins were measured in lipopolysaccharide- (LPS-) treated human NP cells. Inhibition of autophagy by siRNA transfection and chemical drugs aggravated human NP cell pyroptosis. Importantly, we found that the autophagy-lysosome pathway and not the proteasome pathway mediated the degradation of GSDMD-N as lysosome dysfunction promoted the accumulation of cytoplasmic GSDMD-N. Besides, P62/SQSTM1 colocalized with GSDMD-N and mediated its degradation. The administration of the caspase-1 inhibitor VX-765 could reduce cell pyroptosis as confirmed in a rat disc IDD model in vivo, whereas ATG5 knockdown significantly accelerated the progression of IDD. In conclusion, our study indicated that autophagy protects against LPS-induced human NP cell pyroptosis via a P62/SQSTM1-mediated degradation mechanism and the inhibition of pyroptosis retards IDD progression in vivo. These findings deepen the understanding of IDD pathogenesis and hold implications in unraveling therapeutic targets for IDD treatment.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120152, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34256238

RESUMO

Amines are widely used in many fields including agriculture, dyes, medicine and food processing. However, volatile amine vapors could initiate acute and serious damage to human bodies. Thus, highly efficient detection of volatile amine vapors has great importance for academic research as well as practical application. In this work, a turn-on type fluorescent sensor BZCO has been developed, which could be used to detect volatile amine vapors. The portable BZCO sensor can be easily prepared through immersing filter paper into its CH2Cl2 solution and then evaporating it to dryness. This paper-based amine vapor sensor exhibits high sensitivity with a relatively low detection limit at 3.82 ppm. It also has good selectivity for discriminating amine vapors from volatile organic solvents. The detection mechanism has been confirmed by UV-vis spectral analysis. The practical applications of this paper-based BZCO sensor, such as detection of food spoilage and fluorescent security ink, have been investigated. This work has developed a new fluorescent sensor BZCO, which has broad applications in various fields, including amine gas detection, security and anti-counterfeiting materials.

7.
J Transl Med ; 19(1): 311, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281572

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common malignant tumour of the digestive tract that is characterized by high patient morbidity and mortality rates. Claudin-7 (Cldn7), a tight junction protein, was recently reported to function as a candidate tumour suppressor gene in CRC. Our previous study demonstrated that the large intestine of C57/BL6 mice showed intestinal adenomas and abnormal Ki67 expression and distribution in the intestinal crypt when Cldn7 was knocked out. The aim of this study was to further investigate whether Cldn7 deficiency has non-tight junction functions, affects intestinal stemness properties, promotes CRC and to determine the specific mechanism. METHODS: Cell proliferation assays, migration assays, apoptosis assays, tumour sphere formation assays in vitro, and subcutaneous xenograft models in vivo were used to determine the effects of Cldn7 knockdown on the biological characteristics of CRC stem cells. Western blotting, qPCR and immunofluorescence staining were performed to identify the epithelial-mesenchymal transition and the activation of Wnt/ß-catenin pathway in CRC stem cells. Cldn7 inducible conditional gene knockout mice and immunohistochemical staining further verified this hypothesis in vivo. The mechanism and target of Cldn7 were determined by performing a chromatin immunoprecipitation (ChIP) assay and coimmunoprecipitation (CoIP) assay. RESULTS: Cldn7 knock down in CRC stem cells promoted cell proliferation, migration, and globular growth in serum-free medium and the ability to form xenograft tumours; cell apoptosis was inhibited, while the cellular epithelial-mesenchymal transition was also observed. These changes in cell characteristics were achieved by activating the Wnt/ß-catenin pathway and promoting the expression of downstream target genes after ß-catenin entry into the nucleus, as observed in CRC cell lines and Cldn7 gene knockout mouse experiments. Using ChIP and CoIP experiments, we initially found that Cldn7 and Sox9 interacted at the protein level to activate the Wnt/ß-catenin pathway. CONCLUSIONS: Based on our research, Cldn7 deficiency confers stemness properties in CRC through Sox9-mediated Wnt/ß-catenin signalling. This result clarifies that Cldn7 plays an inhibitory role in CRC and reveals a possible molecular mechanism, which is conducive to further research on Cldn7 and cancer stem cells.

8.
J Transl Med ; 19(1): 313, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281583

RESUMO

BACKGROUND: The exploration of genomic alterations in Chinese colorectal liver metastasis (CRLM) is limited, and corresponding genetic biomarkers for patient's perioperative management are still lacking. This study aims to understand genome diversification and complexity that developed in CRLM. METHODS: A custom-designed IDT capture panel including 620 genes was performed in the Chinese CRLM cohort, which included 396 tumor samples from metastatic liver lesions together with 133 available paired primary tumors. RESULTS: In this Chinese CRLM cohort, the top-ranked recurrent mutated genes were TP53 (324/396, 82%), APC (302/396, 76%), KRAS (166/396, 42%), SMAD4 (54/396, 14%), FLG (52/396, 13%) and FBXW7 (43/396, 11%). A comparison of CRLM samples derived from left- and right-sided primary lesions confirmed that the difference in survival for patients with different primary tumor sites could be driven by variations in the transforming growth factor ß (TGF-ß), phosphatidylinositol 3-kinase (PI3K) and RAS signaling pathways. Certain genes had a higher variant rate in samples with metachronous CRLM than in samples with simultaneous metastasis. Overall, the metastasis and primary tumor samples displayed highly consistent genomic alterations, but there were some differences between individually paired metastases and primary tumors, which were mainly caused by copy number variations. CONCLUSION: We provide a comprehensive depiction of the genomic alterations in Chinese patients with CRLM, providing a fundamental basis for further personalized therapy applications.

9.
Aging (Albany NY) ; 13(undefined)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282055

RESUMO

BACKGROUND: The heterogeneous tumor microenvironment (TME) contributes to poor prognosis of hepatocellular carcinoma (HCC). However, determining the modulation of TME during HCC progression remains a challenge. METHODS: Herein, the stromal score and immune score of HCC samples from The Cancer Genome Atlas database were calculated using the ESTIMATE algorithm and differentially expressed genes (DEGs) were obtained. Key DEGs were identified based on a protein-protein interaction network and survival analysis. Immunohistochemistry was carried out using primary samples to evaluate key DEGs expression. The CIBERSORT algorithm was applied to evaluate immune components. Gene Set Enrichment Analysis (GSEA) and correlation analysis were carried out to determine the relationship between key DEGs and tumor-infiltrating immune cells (TICs). RESULTS: The stromal score, immune score and estimate score correlated significantly with 1-year recurrence-free survival of patients with HCC. Interleukin-2 inducible T-cell kinase (ITK) was identified as the most prognostic DEG for patients with HCC. GSEA revealed that genes in the high ITK subgroup were enriched in inflammatory-immunological terms. CIBERSORT analysis identified nine TIC subsets that correlated with ITK expression. CONCLUSION: We identified ITK as a novel indicator for early post-surgery tumor recurrence and microenvironment remodeling in HCC, providing a potential therapeutic target to treat HCC.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120134, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34271238

RESUMO

Studies have shown that changes in the redox state of cells might be closely related to pathological and physiological processes. Sulfur dioxide and hydrogen peroxide, as a significant redox couple in living cells, are endogenously produced by cells. Here, we report a long-wavelength fluorescent probe to reversibly monitor sulfur dioxide and hydrogen peroxide. This probe (NBD) displayed high selectivity and sensitivity, which could be accumulated in mitochondria for real-time imaging of SO2/H2O2. These results indicated that NBD would be an ideal tool for monitoring the redox cycle state in living cells.

12.
Biosens Bioelectron ; 192: 113492, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34265521

RESUMO

Although the use of omethoate (OMT) for pests control is enormously economically beneficial for agricultural production, the high toxicity of OMT to nontarget organisms has resulted in the contamination of soil, river water, and food materials. Developing sensitive and convenient techniques to detect OMT residues is vital to society. Electrochemiluminescence (ECL) is a powerful analytical tool and has been widely applied in biosensors. To boost the co-reaction efficiency and ECL intensity, we introduced defective ZIF-8 as the novel cathodic luminophore. At the same time, defect generated by the doping of MoTe2 nanoparticles into ZIF-8 could easily electrocatalytic reduce the co-reactor S2O82- to SO4•-. Hence, based on the catalysis of defective ZIF-8, the ECL intensity of MoTe2/ZIF-8 nanocomposites is much higher than both ZIF-8 and MoTe2 nanoparticles. By integration of as-prepared materials with specificity omethoate aptamer, the ECL sensor showed a broad linear range (10-10 g L-1 and 10-5 g L-1) and a comparatively low detection limit (3.3 × 10-11 g L-1). Besides, the ECL aptasensor appeared a good practical performance to detect potato and spinach extraction samples, which proposed a promising guideline for developing ECL aptasensors with high efficiency.

13.
Breast ; 59: 165-175, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34271289

RESUMO

BACKGROUND: The benefit of adjuvant cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors with endocrine therapy (ET) in hormone receptor-positive, human epidermal growth factor 2 receptor-negative (HR+/HER2-) early breast cancer (EBC) is uncertain. Hence, we performed a meta-analysis to determine the efficacy and safety of adjuvant CDK4/6 inhibitors plus ET and to identify potential preferred subpopulations for this regimen. METHODS: A literature search was conducted in PubMed, Embase, Cochrane databases up to Jan 15, 2021. Hazard ratios (HRs) for invasive disease-free survival (IDFS) and risk ratios (RRs) for grade 3/4 adverse events (AEs) and treatment discontinuation were extracted. Analysis with predefined subgroup variables was done. Trial sequential analysis (TSA) was performed to assess the conclusiveness of survival outcomes. RESULTS: Three trials were eligible (N = 12647). Compared with ET, adjuvant CDK4/6 inhibitors with ET prolonged IDFS in patients with HR+/HER2- EBC (HR 0.87, 95% CI 0.76-0.98, p = 0.03, I2 = 19%), with positive therapeutic responses observed in patients with N2/N3 nodal status (HR 0.83, 95% CI 0.71-0.97, p = 0.02, I2 = 0%). None of the cumulative z-curves crossed the trial monitoring boundaries in TSA, and no reliable conclusion could be drawn. The combination treatment carried a higher risk of grade 3/4 AEs (RR 4.14, 95% CI 3.33-5.15, p < 0.00001) and an increase in treatment discontinuation due to AEs (RR 19.16, 95% CI 9.27-39.61, p < 0.00001). CONCLUSIONS: Adjuvant CDK4/6 inhibitors with ET might provide survival benefit in HR+/HER2- EBC. A statistically significantly improved IDFS was only observed in N2/N3 subgroup. However, overall evidence favoring the use of this combination regimen was inadequate.

14.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203159

RESUMO

The development of high efficient stacks is critical for the wide spread application of proton exchange membrane fuel cells (PEMFCs) in transportation and stationary power plant. Currently, the favorable operation conditions of PEMFCs are with single cell voltage between 0.65 and 0.7 V, corresponding to energy efficiency lower than 57%. For the long term, PEMFCs need to be operated at higher voltage to increase the energy efficiency and thus promote the fuel economy for transportation and stationary applications. Herein, PEMFC single cell was investigated to demonstrate its capability to working with voltage and energy efficiency higher than 0.8 V and 65%, respectively. It was demonstrated that the PEMFC encountered a significant performance degradation after the 64 h operation. The cell voltage declined by more than 13% at the current density of 1000 mA cm-2, due to the electrode de-activation. The high operation potential of the cathode leads to the corrosion of carbon support and then causes the detachment of Pt nanoparticles, resulting in significant Pt agglomeration. The catalytic surface area of cathode Pt is thus reduced for oxygen reduction and the cell performance decreased. Therefore, electrochemically stable Pt catalyst is highly desirable for efficient PEMFCs operated under cell voltage higher than 0.8 V.

15.
J Occup Health ; 63(1): e12235, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34089209

RESUMO

OBJECTIVE: To evaluate the immunotoxicity and effects of noise and/or low-concentration carbon monoxide (CO) exposure on immune organs and immune functions in rats. METHODS: Male Wistar rats exposed to 98 dB(A) white noise and/or 100 ppm CO 4 h/d for 30 d were used to determine the pathological changes in the thymus and spleen, and variations in leukocyte counts, inflammatory factors, and immunoglobulin (Ig) concentrations. RESULTS: The boundaries of the cortex and medulla of the thymus were unclear following noise and combined exposure. The pathological changes in spleen after CO and combined exposure included blurred boundaries of red-pulp and white-pulp, disappearance of normal splenic nodules and neutrophil infiltration. After exposure to noise and in combination, leukocyte and lymphocyte counts decreased significantly. After exposure to low-concentration CO and in combination, serum IgM and IgG levels decreased significantly, but the levels of tumor necrosis factor-α and interferon-γ levels increased significantly. Eosinophils and IgA levels decreased significantly following exposure to noise and/or low concentration of CO, while the level of interleukin-1 increased significantly. Monocytes increased significantly only under noise or CO exposure, but not under combined exposure. CONCLUSIONS: Noise and/or low-concentration CO exposure may suppress innate and adaptive immune functions and induce inflammatory responses. Noise exposure mainly affected the innate immune function of rats, whereas low-concentration CO exposure mainly affected adaptive immune functions. Combined exposure presented higher immunotoxicity than noise or CO alone, suggesting that exposure to noise and low-concentration CO in the living and working environments can affect the immune system.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34143739

RESUMO

This work addresses a finite-time tracking control issue for a class of nonlinear systems with asymmetric time-varying output constraints and input nonlinearities. To guarantee the finite-time convergence of tracking errors, a novel finite-time command filtered backstepping approach is presented by using the command filtered backstepping technique, finite-time theory, and barrier Lyapunov functions. The newly proposed method can not only reduce the complexity of computation of the conventional backstepping control and compensate filtered errors caused by dynamic surface control but also can ensure that the output variables are restricted in compact bounding sets. Moreover, the proposed controller is applied to robot manipulator systems, which guarantees the practical boundedness of all the signals in the closed-loop system. Finally, the effectiveness and practicability of the developed control strategy are validated by a simulation example.

17.
Front Cell Infect Microbiol ; 11: 667487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123873

RESUMO

Background: Coronavirus disease 2019 (COVID-19) has posed a great threat to global public health. There remains an urgent need to address the clinical significance of laboratory finding changes in predicting disease progression in COVID-19 patients. We aimed to analyze the clinical and immunological features of severe and critically severe patients with COVID-19 in comparison with non-severe patients and identify risk factors for disease severity and clinical outcome in COVID-19 patients. Methods: The consecutive records of 211 patients with COVID-19 who were admitted to Zhongnan Hospital of Wuhan University from December 2019 to February 2020 were retrospectively reviewed. Results: Of the 211 patients with COVID-19 recruited, 111 patients were classified as non-severe, 59 as severe, and 41 as critically severe cases. The median age was obviously higher in severe and critically severe cases than in non-severe cases. Severe and critically severe patients showed more underlying comorbidities than non-severe patients. Fever was the predominant presenting symptom in COVID-19 patients, and the duration of fever was longer in critically severe patients. Moreover, patients with increased levels of serum aminotransferases and creatinine (CREA) were at a higher risk for severe and critical COVID-19 presentations. The serum levels of IL-6 in severe and critically severe patients were remarkably higher than in non-severe patients. Lymphopenia was more pronounced in severe and critically severe patients compared with non-severe patients. Lymphocyte subset analysis indicated that severe and critically severe patients had significantly decreased count of lymphocyte subpopulations, such as CD4+ T cells, CD8+ T cells and B cells. A multivariate logistic analysis indicated that older age, male sex, the length of hospital stay, body temperature before admission, comorbidities, higher white blood cell (WBC) counts, lower lymphocyte counts, and increased levels of IL-6 were significantly associated with predicting the progression to severe stage of COVID-19. Conclusion: Older age, male sex, underlying illness, sustained fever status, abnormal liver and renal functions, excessive expression of IL-6, lymphopenia, and selective loss of peripheral lymphocyte subsets were related to disease deterioration and clinical outcome in COVID-19 patients. This study would provide clinicians with valuable information for risk evaluation and effective interventions for COVID-19.


Assuntos
COVID-19 , Idoso , China/epidemiologia , Humanos , Masculino , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença
18.
Adv Mater ; 33(27): e2100214, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34062016

RESUMO

The flexible, transparent, and low-weight nature of ferroelectric polymers makes them promising for wearable electronic and optical applications. To reach the full potential of the polarization-enabled device functionalities, large-scale fabrication of polymer thin films with well-controlled polar directions is called for, which remains a central challenge. The widely exploited Langmuir-Blodgett, spin-coating, and electrospinning methods only yield polymorphous or polycrystalline films, where the net polarization is compromised. Here, an easily scalable approach is reported to achieve poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) thin films composed of close-packed crystalline nanowires via interface-epitaxy with 1T'-ReS2 . Upon controlled thermal treatment, uniform P(VDF-TrFE) films restructure into about 10 and 35 nm-wide (010)-oriented nanowires that are crystallographically aligned with the underlying ReS2 , as revealed by high-resolution transmission electron microscopy. Piezoresponse force microscopy studies confirm the out-of-plane polar axis of the nanowire films and reveal coercive voltages as low as 0.1 V. Reversing the polarization can induce a conductance switching ratio of >108 in bilayer ReS2 , over six orders of magnitude higher than that achieved by an untreated polymer gate. This study points to a cost-effective route to large-scale processing of high-performance ferroelectric polymer thin films for flexible energy-efficient nanoelectronics.

19.
J Neural Eng ; 18(4)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34077914

RESUMO

Objective. With the development of clinical applications of motor imagery-based brain-computer interfaces (MI-BCIs), a single-channel MI-BCI system that can be easily assembled is an attractive goal. However, due to the low quality of the spectral power features in the traditional MI-BCI paradigm, the recognition performance of current single-channel systems is far lower than that of multi-channel systems, impeding their use in clinical applications.Approach.In this study, the subjects' right and left hands were stimulated simultaneously at different frequencies to induce steady-state somatosensory evoked potentials (SSSEP). Subjects then performed motor imagery (MI) tasks. A new electroencephalography (EEG) index, inter-stimulus phase coherence (ISPC), was built to measure phase desynchronization of SSSEP caused by MI. Then, ISPC is introduced as a feature into left-hand and right-hand MI recognition.Main results.ISPC analysis found that left-handed MI can cause a significant decrease in phase synchronization in contralateral sensorimotor SSSEP, while right-handed MI has little effect on it, and vice versa. Combining ISPC features with traditional spectral power features, the single-channel left-hand versus right-hand MI recognition accuracy reaches 81.0%, which is much higher than that observed with traditional MI paradigms (about 60%).Significance.This work shows that the hybrid MI-SSSEP paradigm can provide more sensitive EEG features to decode motor intentions, demonstrating its potential for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...