Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.740
Filtrar
2.
Br J Cancer ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956246

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection. METHODS: The study encompassed three phases: discovery, verification, and validation, comprising a total of 1309 individuals. Serum autoantibodies were profiled using the HuProtTM human proteome microarray, and autoantibody levels were measured using the enzyme-linked immunosorbent assay (ELISA). Twelve machine learning algorithms were employed to construct diagnostic models, and evaluated using the area under the receiver operating characteristic curve (AUC). The model application was facilitated through R Shiny, providing a graphical interface. RESULTS: Thirteen autoantibodies targeting TAAs (CAST, FAM131A, GABPA, HDAC1, HDGFL1, HSF1, ISM2, PTMS, RNF219, SMARCE1, SNAP25, SRPK2, and ZPR1) were identified in the discovery phase. Subsequent verification and validation phases identified five TAAbs (anti-CAST, anti-HDAC1, anti-HSF1, anti-PTMS, and anti-ZPR1) that exhibited significant differences between ESCC and control subjects (P < 0.05). The support vector machine (SVM) model demonstrated robust performance, with AUCs of 0.86 (95% CI: 0.82-0.89) in the training set and 0.83 (95% CI: 0.78-0.88) in the test set. For early-stage ESCC, the SVM model achieved AUCs of 0.83 (95% CI: 0.79-0.88) in the training set and 0.83 (95% CI: 0.77-0.90) in the test set. Notably, promising results were observed for high-grade intraepithelial neoplasia, with an AUC of 0.87 (95% CI: 0.77-0.98). The web-based implementation of the early ESCC diagnostic tool is publicly accessible at https://litdong.shinyapps.io/ESCCPred/ . CONCLUSION: This study provides a promising and easy-to-use diagnostic prediction model for early ESCC detection. It holds promise for improving early detection strategies and has potential implications for public health.

3.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957086

RESUMO

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ferritinas , Salmonella , Anticorpos de Domínio Único , Ferritinas/imunologia , Ferritinas/química , Ferritinas/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Salmonella/imunologia , Salmonella/genética , Ensaio de Imunoadsorção Enzimática/métodos , Limite de Detecção , Afinidade de Anticorpos , Anticorpos Antibacterianos/imunologia , Imunoensaio/métodos
4.
Front Neurosci ; 18: 1415411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948928

RESUMO

Background: Previous neuroimaging studies have revealed structural and functional brain abnormalities in patients with cervical spondylosis (CS). However, the results are divergent and inconsistent. Therefore, the present study conducted a multi-modal meta-analysis to investigate the consistent structural and functional brain alterations in CS patients. Methods: A comprehensive literature search was conducted in five databases to retrieve relevant resting-state functional magnetic resonance imaging (rs-fMRI), structural MRI and diffusion tensor imaging (DTI) studies that measured brain functional and structural differences between CS patients and healthy controls (HCs). Separate and multimodal meta-analyses were implemented, respectively, by employing Anisotropic Effect-size Signed Differential Mapping software. Results: 13 rs-fMRI studies that used regional homogeneity, amplitude of low-frequency fluctuations (ALFF) and fractional ALFF, seven voxel-based morphometry (VBM) studies and one DTI study were finally included in the present research. However, no studies on surface-based morphometry (SBM) analysis were included in this research. Due to the insufficient number of SBM and DTI studies, only rs-fMRI and VBM meta-analyses were conducted. The results of rs-fMRI meta-analysis showed that compared to HCs, CS patients demonstrated decreased regional spontaneous brain activities in the right lingual gyrus, right middle temporal gyrus (MTG), left inferior parietal gyrus and right postcentral gyrus (PoCG), while increased activities in the right medial superior frontal gyrus, bilateral middle frontal gyrus and right precuneus. VBM meta-analysis detected increased GMV in the right superior temporal gyrus (STG) and right paracentral lobule (PCL), while decreased GMV in the left supplementary motor area and left MTG in CS patients. The multi-modal meta-analysis revealed increased GMV together with decreased regional spontaneous brain activity in the left PoCG, right STG and PCL among CS patients. Conclusion: This meta-analysis revealed that compared to HCs, CS patients had significant alterations in GMV and regional spontaneous brain activity. The altered brain regions mainly included the primary visual cortex, the default mode network and the sensorimotor area, which may be associated with CS patients' symptoms of sensory deficits, blurred vision, cognitive impairment and motor dysfunction. The findings may contribute to understanding the underlying pathophysiology of brain dysfunction and provide references for early diagnosis and treatment of CS. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, CRD42022370967.

5.
Heliyon ; 10(12): e31846, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38952363

RESUMO

The Internet of Things communication protocol is prone to security vulnerabilities when facing increasing types and scales of network attacks, which can affect the communication security of the Internet of Things. It is crucial to effectively detect these vulnerabilities in order to improve the security of IoT communication protocols and promptly fix them. Therefore, this study proposes a distributed IoT communication protocol vulnerability detection method based on an improved parallelized fuzzy testing algorithm. Firstly, based on design principles and by comparing different communication protocols, a communication architecture for the distribution network's Internet of Things was constructed, and the communication protocols were formalized and decomposed. Next, preprocess the vulnerability detection samples, and then use genetic algorithm to improve the parallelized fuzzy testing algorithm to perform vulnerability detection. Through this improved algorithm, the missed detection rate and false detection rate can be effectively reduced, thereby improving the security of IoT communication protocols. The experimental results show that the highest missed detection rate of this method is only 4.0 %, and the false detection rate is low, with high detection efficiency. This indicates that the method has good performance and reliability in detecting vulnerabilities in IoT communication protocols.

6.
Front Nutr ; 11: 1422084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957870

RESUMO

Objective: This study aimed to investigate the association between serum 25-hydroxyvitamin D (25(OH)D) concentrations and mortality in long-term prescription opioid users. Methods: The study included 1856 long-term prescription opioid users from the National Health and Nutrition Examination Survey (NHANES, 2001-2018). Mortality status were determined by matching with the National Death Index (NDI) records until December 31, 2019. Multivariable Cox proportional hazard models were constructed to assess the association. Results: Over a median follow-up period of 7.75 years, there were 443 cases of all-cause mortality, including 135 cardiovascular disease (CVD) deaths and 94 cancer deaths. After multivariable adjustment, participants with serum 25(OH)D concentrations within 50.00 to <75.00 nmol/L and ≥ 75 nmol/L had a lower risk of all-cause mortality, with hazard ratios (HRs) of 0.50 (95% confidence interval [CI] 0.29, 0.86) and 0.54 (95% CI 0.32, 0.90), respectively. Nevertheless, no significant association was found between serum 25(OH)D concentrations and the risk of CVD or cancer mortality. The RCS analysis revealed a non-linear association of serum 25(OH)D concentration with all-cause mortality (p for non-linear = 0.01). Per 1-unit increment in those with serum 25(OH)D concentrations <62.17 nmol/L corresponded to a 2% reduction in the risk of all-cause mortality (95% CI 0.97, 1.00), but not changed significantly when 25(OH)D concentrations ≥62.17 nmol/L. Conclusion: In conclusion, a non-linear association existed between serum 25(OH)D concentrations and all-cause mortality in long-term prescription opioid users. Maintaining serum 25(OH)D concentrations ≥62.17 nmol/L may be beneficial in preventing all-cause mortality in this population.

7.
J Hazard Mater ; 476: 135091, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959828

RESUMO

The relative severity between chromium (Cr)-mediated ecotoxicity and its bioaccumulation has rarely been compared and evaluated. This study employed pot incubation experiments to simulate the soil environment with increased Cr pollution and study their effects on the growth of crops, including pepper, lettuce, wheat, and rice. Results showed that increasing total Cr presented ascendant ecotoxicity in upland soils when pH > 7.5, and significantly reduced the yield of pepper, lettuce and wheat grain by 0.3-100 %, whereas, this effect was weakened even reversed as the pH decreased. Surprisingly, a series of soils with Cr concentration of 22.7-623.5 mg kg-1 did not cause Cr accumulation in four crops over the Chinese permissible limit. The toxicity of Cr was highly associated with extractable Cr, where Cr (VI) made the greater contributions than Cr (III). Conclusively, the ecotoxicity of Cr poses a greater environmental issue as compared to the bioaccumulation of Cr in crops in upland soils, while extractable Cr (VI) makes the predominant contributions to the ecotoxicity of Cr as the total Cr increased. Our study proposes a synchronous consideration involving total Cr and Cr (VI) as the theoretical basis to establish a more reliable soil quality standard for safe production in China.

8.
J Med Chem ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968440

RESUMO

Herein, a series of novel arylpiperazine (piperidine) derivatives were designed, synthesized, and evaluated for mechanisms of action through in vitro and in vivo studies. The most promising compound, II-13 (later named as MT-1207), is a potent α1 and 5-HT2A receptor antagonist with remarkable IC50 in the picomolar level. Importantly, in the in vivo assay, II-13 achieved an effective blood pressure (BP) reduction in the 2K2C rat model without damaging renal function. Compound II-13, with its significant advantages in terms of pharmacological effects, pharmacokinetic parameters, and a large safety window, was extensively investigated. Moreover, data also showed that compound II-13 had fewer side effects in a postural BP assay and could prevent the onset of postural hypotension. Together, these results suggested that compound II-13 is a highly potent antihypertensive drug candidate with multitarget mechanisms of action in preclinical models. Currently, MT-1207 is in phase II hypertensive clinical trials in China.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38970440

RESUMO

Cartilage tissue, encompassing hyaline cartilage, fibrocartilage, and elastic cartilage, plays a pivotal role in the human body due to its unique composition, structure, and biomechanical properties. However, the inherent avascularity and limited regenerative capacity of cartilage present significant challenges to its healing following injury. This review provides a comprehensive analysis of the current state of cartilage tissue engineering, focusing on the critical components of cell sources, scaffolds, and growth factors tailored to the regeneration of each cartilage type.We explore the similarities and differences in the composition, structure, and biomechanical properties of the three cartilage types and their implications for tissue engineering. A significant emphasis is placed on innovative strategies for cartilage regeneration, including the potential for in situ transformation of cartilage types through microenvironmental manipulation, which may offer novel avenues for repair and rehabilitation.The review underscores the necessity of a nuanced approach to cartilage tissue engineering, recognizing the distinct requirements of each cartilage type while exploring the potential of transforming one cartilage type into another as a flexible and adaptive repair strategy. Through this detailed examination, we aim to broaden the understanding of cartilage tissue engineering and inspire further research and development in this promising field.

10.
Adv Mater ; : e2405981, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970528

RESUMO

Ferroelectric materials, traditionally comprising inorganic ceramics and polymers, are commonly used in medical implantable devices. However, their nondegradable nature often necessitates secondary surgeries for removal. In contrast, ferroelectric molecular crystals have the advantages of easy solution processing, lightweight, and good biocompatibility, which are promising candidates for transient (short-term) implantable devices. Despite these benefits, the discovered biodegradable ferroelectric materials remain limited due to the absence of efficient design strategies. Here, inspired by the polar structure of polyvinylidene fluoride (PVDF), a ferroelectric molecular crystal 1H,1H,9H,9H-perfluoro-1,9-nonanediol (PFND), which undergoes a cubic-to-monoclinic ferroelectric plastic phase transition at 339 K, is discovered. This transition is facilitated by a 2D hydrogen bond network formed through O-H···O interactions among the oriented PFND molecules, which is crucial for the manifestation of ferroelectric properties. In this sense, by reducing the number of -CF2- groups from ≈5 000 in PVDF to seven in PFND, it is demonstrated that this ferroelectric compound only needs simple solution processing while maintaining excellent biosafety, biocompatibility, and biodegradability. This work illuminates the path toward the development of new biodegradable ferroelectric molecular crystals, offering promising avenues for biomedical applications.

11.
Environ Geochem Health ; 46(8): 286, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967819

RESUMO

The vacuum preloading coupling flocculation treatment is a widely employed method for reinforcing soils with high water content in practical construction. However, uneven distribution and accumulation of flocculants pose significant damage to the soil environment and result in uneven soil consolidation, leading to severe issues in subsequent soil development and exploitation. To address these concerns, an evolved leaching with vacuum method is developed for facilitating soil consolidation while preventing the accumulation of flocculant in the soil. In this study, five model tests are conducted in which FeCl3 is chosen as the typical flocculant to promote soil consolidation, and deionized water is used for leaching. The final discharged water, settlement, water content and penetration resistance of soil are obtained to evaluate the soil reinforcement effect, while the flocculant removal effect is evaluated by the Fe3+ content in the filtrate and soil. The comprehensive reinforcement and flocculant removal effect show that this method is extremely effective compared to traditional vacuum preloading. The two leaching is clarified as the best choice, resulting in a 22% decrease in the soil water content and a 25% in soil penetration resistance, meanwhile a 12.8% removal rate of the flocculant. The test results demonstrate that leaching with vacuum preloading can contribute to promoting soil consolidation and reducing the accumulation of flocculant in the soil, ensuring the safe and eco-friendly use of the soil for future applications. The conclusions obtained are of significant theoretical value and technical support for practical construction and sustainable development.


Assuntos
Floculação , Solo , Solo/química , Vácuo , Poluentes do Solo/química , Compostos Férricos/química , Cloretos/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-38980776

RESUMO

Research has shown that small nucleolar RNAs (snoRNAs) play crucial roles in various biological processes, and understanding disease pathogenesis by studying their relationship with diseases is beneficial. Currently, known associations are insufficient, and conventional biological experiments are costly and time-consuming. Therefore, developing efficient computational methods is crucial for identifying potential snoRNA-disease associations. In this paper, a method to identify snoRNA-disease associations based on graph convolutional network and multi-view graph attention mechanism (GCASDA) is proposed. Firstly, the similarity matrices of snoRNAs and diseases are calculated based on biological entity-related information, and the weights of the edges between the snoRNA nodes and the disease nodes are supplemented by random forest. Then two homogeneous graphs and one heterogeneous graph are constructed. Subsequently, different types of embedded features are extracted from the graphs using specific graph convolutional network structure and integrated through a multi-view graph attention mechanism to obtain node embedded feature representations. Finally, for each pair of nodes, in addition to their global features, node interaction features are passed together to a multilayer perceptron neural network (MLP) to identify snoRNA-disease associations. Experimental results show that GCASDA achieves 0.9356 and 0.9294 in AUC and AUPR, respectively, and significantly outperformed other state-of-the-art methods on the basis of different evaluation metrics. Furthermore, the case study could further demonstrate the realistic feasibility of GCASDA.

13.
Pathol Res Pract ; 260: 155413, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981344

RESUMO

INTRODUCTION: Osteoclasts, which are responsible for bone resorption, are specialized multinucleated cells generated from monocyte/macrophage progenitor cells or hematopoietic stem cells (HSCs). Physiological bone remodeling can become pathological, such as osteoporosis, when osteoclastogenesis is out of balance. Thousands of long noncoding RNAs (lncRNAs) influence important molecular and biological processes. Recent research has revealed gene expression regulation function that numerous lncRNAs regulate nuclear domain organization, genome stability. Furthermore, the research of lncRNAs has substantial clinical implications for the treatment of existing and new diseases. AREAS COVERED: In this review, we gather the most recent research on lncRNAs and their potential for basic research and clinical applications in osteoclast and osteoporosis. We also discuss the findings here in order to fully understand the role of lncRNAs in osteoclast differentiation and osteoporosis, as well as to provide a solid basis for future research exploring associated mechanisms and treatments. EXPERT OPINION: LncRNA has been considered as an important role in the regulation of osteoclast differentiation and osteoporosis. It is exciting to investigate pathophysiological processes in osteoporosis and the therapeutic potential of lncRNAs. We hope that this review will offer promising prospects for the development of precision and individualized approaches to treatment.

14.
Anim Nutr ; 18: 1-16, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38989011

RESUMO

The effects of Lactobacillus plantarum in microencapsulation (LPM) on intestinal development in layer chicks were investigated in this study, as well as the colonization of L. plantarum in the gut. A total of 480 healthy Hy-Line Brown layer chicks at 0 d old were randomly divided into 4 groups (8 replicates each treatment), and the diets of these birds were supplemented with nothing (control), L. plantarum (0.02 g/kg feed; 109 CFU/kg feed), LPM (1.0 g/kg feed; 109 CFU/kg feed) and wall material of LPM (WM; 0.98 g/kg feed), respectively. Compared to control, LPM improved growth performance and intestinal development of layer chicks, evidenced by significantly increased body weight, average daily gain, average daily feed intake, villus height, villus height/crypt depth, as well as weight and length of the duodenum, jejunum and ileum (P < 0.05). These results could be attributed to the increased colonization of L. plantarum in the gut, which was verified by significant increases in lactic acid content, viable counts in chyme and mucosa (P < 0.05), as well as a visible rise in number of strains labeled with fluorescein isothiocyanate. Meanwhile, the relative abundances of Lactobacillus and Bifidobacterium significantly increased in response to microencapsulated L. plantarum supplementation (P < 0.05), accompanied by the significant up-regulation of colonization related genes (P < 0.05), encoding solute carrier family, monocarboxylate transporter, activin A receptor, succinate receptor and secretogranin II. To sum up, microencapsulated L. plantarum supplementation promoted intestinal development, which could be attributed to the enhancement of L. plantarum colonization in the intestine through the mutual assistance of Bifidobacterium and interactions with colonization related transmembrane proteins.

15.
Biochem Biophys Res Commun ; 730: 150366, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991254

RESUMO

Laryngeal squamous cell carcinoma (LSCC) with a high incidence and mortality rate, has a serious impact worldwide. Phosphofructokinase-1 liver type (PFKL) is a major enzyme in glycolysis progress, but its role in modulating tumorigenesis and cisplatin (DDP) chemosensitivity of LSCC was still unclear. The mRNA and protein levels of PFKL were detected by qRT-PCR and immunohistochemical assay. Cell Counting Kit-8 assay and flow cytometry were carried out to observe cell viability, as well as apoptosis and mitochondrial reactive oxygen species (mito-ROS). Extracellular acidification rate and lactate content were measured using extracellular flux analysis and lactate assay kit. Immunofluorescent staining was used to evaluate the expression of γ-H2AX foci. DNA damage was detected via single-cell gel electrophoresis. Western blotting was introduced to evaluate the protein level of PFKL, LDHA, γ-H2AX, cleaved PARP, H3K27ac, and H3K9ac. Mice xenograft model of LSCC was built for in vivo validation. The PFKL expression was significantly increased in LSCC and associated with poor survival of LSCC patients. Knockdown of PFKL in LSCC cells significantly inhibited cell viability, ECAR, lactate content, and LDHA expression, but promoted mito-ROS level. Furthermore, knockdown of PFKL enhanced response of LSCC cells to DDP by increasing DDP-induced apoptosis, promoting DDP-induced mito-ROS level, γ-H2AX foci, tail DNA, and the expression of γ-H2AX and cleaved PARP. However, the overexpression of PFKL in LSCC cells had opposite experimental results. Nude mice tumor formation experiment proved that downregulation of PFKL significantly enhanced response of cells to DDP, demonstrated by reduced tumor volume, weight and increased TUNEL-positive cells. Suppression of CBP/EP300-mediated PFKL transcription inhibited cell viability and glycolysis and promoted mito-ROS in LSCC. PFKL promotes cell viability and DNA damage repair in DDP-treated LSCC through regulation of glycolysis pathway.

16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 597-603, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38991958

RESUMO

OBJECTIVE: To investigate the protective effect of berberine hydrochloride on intestinal mucosal barrier damage in sepsis rats and its mechanism. METHODS: Forty-eight male SD rats were divided into a control group (Sham group, 6 cases), a sepsis model group (LPS group, 14 cases), a berberine hydrochloride intervention group (Ber group, 14 cases), and a Notch signaling pathway inhibition group (DAPT group, 14 cases) according to random number table method. The DAPT group was intraperitoneally injected with 5 mg/kg Notch signaling pathway inhibition DAPT 2 hours before modeling. The sepsis model was established by intraperitoneal injection of 10 mg/kg lipopolysaccharide (LPS); Sham group was injected with an equal amount of saline (2 mL). The Ber group and DAPT group were treated with gavage of 50 mg/kg berberine hydrochloride 2 hours after modeling; Sham group and LPS group were treated with gavage of an equal amount of saline (2 mL). The temperature, weight, behavior and survival rate of rats were observed at 0, 6, 12 and 24 hours of modeling. After 24 hours of modeling, abdominal aortic blood was collected under anesthesia, and intestinal tissues were obtained after euthanasia. The pathological changes of ileum were observed under light microscope. The ultrastructure of ileum was observed under transmission electron microscope. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of serum diamine oxidase (DAO), intestinal fatty acid binding protein (iFABP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Real time-polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expressions of tight junction proteins (Occludin and Claudin1), Notch1 and their downstream target signals in the ileum tissue. RESULTS: After 24 hours of modeling, compared with the Sham group, the LPS group, Ber group, and DAPT group showed a decrease in weight and an increase in temperature. Among them, the LPS group showed the most significant changes, followed by the DAPT group, and the Ber group showed the least significant changes. The survival rates of the LPS group, Ber group, and DAPT group were all lower than those of the Sham group [42.9% (6/14), 57.1% (8/14), 57.1% (8/14) vs. 100% (6/6)], and six rats were taken from each group for subsequent testing. Macroscopic observation of the intestine showed that the LPS group had the most severe edema in the ileum tissue and abdominal bleeding, with significant improvement in the Ber group and followed by the DAPT group. Under the light microscope, the LPS group showed disordered arrangement of glandular tissue in the ileum mucosa, significantly reduced goblet cells, and extensive infiltration of inflammatory cells, which were significantly improved in the Ber group but less improved in the DAPT group. Under electron microscopy, the LPS group showed extensive shedding of ileal microvilli and severe damage to the tight junction complex structure of intestinal epithelial cells, which was significantly improved in the Ber group but less improved in the DAPT group. The levels of serum DAO, iFABP, TNF-α, IL-6 in the LPS group were significantly higher than those in the Sham group, while the above indicators in the Ber group were significantly lower than those in the LPS group [DAO (µg/L): 4.94±0.44 vs. 6.53±0.49, iFABP (ng/L): 709.67±176.97 vs. 1 417.71±431.44, TNF-α (ng/L): 74.70±8.15 vs. 110.36±3.51, IL-6 (ng/L): 77.34±9.80 vs. 101.65±6.92, all P < 0.01], while the above indicators in the DAPT group were significantly higher than those in the Ber group. The results of RT-PCR and Western blotting showed that the mRNA and protein expressions of Occludin, Claudin1, Notch1, and Hes1 in the ileum tissue of LPS group rats were decreased compared to the Sham group, which were significantly increased in the Ber group compared with the LPS group [mRNA expression: Occludin mRNA (2-ΔΔCt): 1.61±0.74 vs. 0.30±0.12, Claudin1 mRNA (2-ΔΔCt): 1.97±0.37 vs. 0.58±0.14, Notch1 mRNA (2-ΔΔCt): 1.29±0.29 vs. 0.36±0.10, Hes1 mRNA (2-ΔΔCt): 1.22±0.39 vs. 0.27±0.04; protein expression: Occludin/GAPDH: 1.17±0.14 vs. 0.74±0.04, Claudin1/GAPDH: 1.14±0.06 vs. 0.58±0.10, Notch1/GAPDH: 0.87±0.11 vs. 0.56±0.09, Hes1/GAPDH: 1.02±0.13 vs. 0.62±0.01; all P < 0.05], while those in the DAPT group were significantly lower than those in the Ber group. CONCLUSIONS: Early use of berberine hydrochloride can significantly improve intestinal mucosal barrier damage in sepsis rats, and its mechanism may be related to inhibiting inflammatory response and regulating the expression of intestinal mechanical barrier tight junction protein through Notch1 signal.


Assuntos
Berberina , Mucosa Intestinal , Ratos Sprague-Dawley , Sepse , Animais , Berberina/farmacologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Masculino , Ratos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
17.
J Zhejiang Univ Sci B ; : 1-16, 2024 Jul 09.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38993075

RESUMO

Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.

18.
Chem Biol Interact ; : 111144, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002877

RESUMO

Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452, -25.907, 27.363, and 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 291.08 J/K mol and 60.83 kJ/mol, respectively, indicating that hydrophobic force was the major driving forces in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OFPRs in humans.

19.
Sci Transl Med ; 16(755): eadg3456, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985854

RESUMO

Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing ß cells are reduced in number in most people with diabetes, but most individuals still have some residual ß cells. However, none of the many diabetes drugs in common use increases human ß cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human ß cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on ß cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human ß cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human ß cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human ß cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human ß cell mass occurred through mechanisms that included enhanced human ß cell proliferation, function, and survival. The increase in human ß cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor-GLP1RA combination for diabetes treatment.


Assuntos
Quinases Dyrk , Exenatida , Harmina , Células Secretoras de Insulina , Peptídeos , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Exenatida/farmacologia , Exenatida/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Harmina/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Camundongos , Peptídeos/farmacologia , Peptídeos/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Quimioterapia Combinada , Proliferação de Células/efeitos dos fármacos , Xenoenxertos
20.
Chemistry ; : e202401380, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987889

RESUMO

Photocatalytic ozonation is considered to be a promising approach for the treatment of refractory organic pollutants, but the design of efficient catalyst remains a challenge. Surface modification provides a potential strategy to improve the activity of photocatalytic ozonation. In this work, density functional theory (DFT) calculations were first performed to check the interaction between O3 and TiO2-OH (surface hydroxylated TiO2) or TiO2-F (surface fluorinated TiO2), and the results suggest that TiO2-OH displays better O3 adsorption and activation than does TiO2-F, which is confirmed by experimental results. The surface hydroxyl groups greatly promote the O3 activation, which is beneficial for the generation of reactive oxygen species (ROS). Importantly, TiO2-OH displays better performance towards pollutants (such as berberine hydrochloride) removal than does TiO2-F and most reported ozonation photocatalysts. The total organic carbon (TOC) removal efficiency reaches 84.4% within two hours. This work highlights the effect of surface hydroxylation on photocatalytic ozonation and provides ideas for the design of efficient photocatalytic ozonation catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA