Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Nat Commun ; 11(1): 847, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051415

RESUMO

Laser spectroscopy outperforms electrochemical and semiconductor gas sensors in selectivity and environmental survivability. However, the performance of the state-of-the-art laser sensors is still insufficient for many high precision applications. Here, we report mode-phase-difference photothermal spectroscopy with a dual-mode anti-resonant hollow-core optical fiber and demonstrate all-fiber gas (acetylene) detection down to ppt (parts-per-trillion) and <1% instability over a period of 3 hours. An anti-resonant hollow-core fiber could be designed to transmit light signals over a broad wavelength range from visible to infrared, covering molecular absorption lines of many important gases. This would enable multi-component gas detection with a single sensing element and pave the way for ultra-precision gas sensing for medical, environmental and industrial applications.

2.
Sci Total Environ ; 716: 137176, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32059305

RESUMO

In this study, organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in needle leaves with different ages were measured in three prevalent coniferous forests including spruce, fir and pinus in southeast Tibetan Plateau (TP) to investigate accumulation behavior of persistent organic pollutants (POPs) during entire growth cycle of needles. The accumulation concentration of POPs was higher in pinus and fir needles than in spruce needles. Concentrations for most of OCPs significantly increased with needle ages, especially dichlorodiphenyltrichloroethane (DDT) and its metabolites showed more remarkable increasing trend than hexachlorocyclohexane isomers (HCHs) and hexachlorobenzene (HCB) in the three tree species. However, age dependence accumulation of PAHs was not observed in most cases, possibly due to its easier degradation property and the influence by dramatic change of ambient atmospheric concentration of PAHs. The lipid normalized concentrations in needles exhibited similar accumulation pattern with that of dry weight basis. The controlling factors for concentration variation in needles were identified using multiple linear regression. The suitability of these needle species acting as potential passive sampler for atmospheric POPs was evaluated. The different-age needles could reflect atmospheric OCP concentrations in the past long-term trend. Findings of this study provide guidance in use of needle as passive samples for the background monitoring of the atmospheric contamination at remote and poorly accessible locations such as the TP.

3.
J Atheroscler Thromb ; 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062644

RESUMO

AIM: To investigate the association of small dense low-density lipoprotein cholesterol (sdLDL-C) and acute ischemic stroke (AIS) in terms of risk, severity, and outcomes. Prediction models were established to screen high-risk patients and predict prognosis of AIS patients. METHODS: We enrolled in this study 355 AIS patients and 171 non-AIS controls. AIS was subtyped according to TOAST criteria, and the severity and outcomes of AIS were measured. Blood glucose and lipid profiles including total cholesterol, triglyceride, and lipoproteins were measured in all patients using automatic measure. Lipoprotein subfractions were detected by the Lipoprint LDL system. RESULTS: As compared with the non-AIS control group, the AIS group had higher sdLDL-C levels. Pearson correlation analysis revealed that the sdLDL-C level and risk of AIS, especially non-cardioembolic stroke, were positively correlated. The area under the curve of sdLDL-C for AIS risk was 0.665, better than that of other lipids. Additionally, the sdLDL-C level was significantly correlated with AIS severity and bad outcomes. A logistic regression model for assessing the probability of AIS occurrence and a prognostic prediction model were established based on sdLDL-C and other variables. CONCLUSIONS: Elevated levels of sdLDL-C were associated with a higher prevalence of AIS, especially in non-cardioembolic stroke subtypes. After adjustment for other risk factors, sdLDL-C was found to be an independent risk factor for AIS. Also, sdLDL-C level was strongly associated with AIS severity and poor functional outcomes. Logistic regression models for AIS risk and prognosis prediction were established to help clinicians provide better prevention for high-risk subjects and monitor their prognosis.

4.
J Toxicol Environ Health A ; : 1-8, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019422

RESUMO

Olfactory receptor (OR) genes are extensively distributed throughout the human organism. Although these receptors are predominantly located in the olfactory epithelium, binding between odorant chemicals and corresponding ORs initiates downstream events in other tissues. In particular, exposure to allergen fragrances results in the induction of contact dermatitis. At present, current methodologies are limited in their ability to predict the consequences of fragrancy chemicals on humans. The aim of this study was designed to simulate the bindingstructure between lyral and OR10J5, a known allergen which produces contact dermatitis, and its corresponding OR OR10J5 in an effort to predict dermal outcomes using computational methods. Results demonstrated that binding between lyral and OR10J5 involved amino acid residues Phe104, Val105, Cyx178, Ile180, and Tyr258, respectively, which were located on binding sites of the receptor transmembrane 3(TM3), TM3, extracellular loop 2(EL2), EL2, TM6. Evidence indicates that computer simulating binding interactions occurred between an odorant chemical and its receptors which initiated downstream alterations accounting possibly for the observed in vivo contact dermatitis.

5.
J Toxicol Environ Health A ; : 1-11, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019429

RESUMO

Olfactory receptors (ORs) are a group of G protein coupled receptors (GPCRs) that initiate chemical odorant signals. Although ORs are predominantly located in nasal epithelia to detect smell, these receptors are also present in peripherally in non-nasal organs/tissues. Since the quality of life and cognitive and sensorial features of sense of smell are worsened in multiple chemical sensitivity due to the interaction of ORs with offending compounds, it is important to not only differentiate these receptors from other GPCRs but also characterize these organelles to understand the underlying mechanisms of smelling disorders. The aim of this study was develop computerized programs to differentiate ORs from GPCRs. The computer program was developed on the basis of widely accepted basic algorithms. It is noteworthy that an accuracy of 95.5% was attained, a level not achieved using other established techniques for screening of ORs from GPCRs. The high accuracy rate indicates that this method of differential identification appears reliable. Our findings indicate that this novel method may be considered as a tool for identification and characterization of receptors which might aid in therapeutic approaches to human chemical-mediated sensitization.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31981517

RESUMO

BACKGROUND: Colonoscopy with computer-aided detection (CADe) has been shown in non-blinded trials to improve detection of colon polyps and adenomas by providing visual alarms during the procedure. We aimed to assess the effectiveness of a CADe system that avoids potential operational bias. METHODS: We did a double-blind randomised trial at the endoscopy centre in Caotang branch hospital of Sichuan Provincial People's Hospital in China. We enrolled consecutive patients (aged 18-75 years) presenting for diagnostic and screening colonoscopy. We excluded patients with a history of inflammatory bowel disease, colorectal cancer, or colorectal surgery or who had a contraindication for biopsy; we also excluded patients who had previously had an unsuccessful colonoscopy and who had a high suspicion for polyposis syndromes, inflammatory bowel disease, and colorectal cancer. We allocated patients (1:1) to colonoscopy with either the CADe system or a sham system. Randomisation was by computer-generated random number allocation. Patients and the endoscopist were unaware of the random assignment. To achieve masking, the output of the system was shown on a second monitor that was only visible to an observer who was responsible for reporting the alerts. The primary outcome was the adenoma detection rate (ADR), which is the proportion of individuals having a complete colonoscopy, from caecum to rectum, who had one or more adenomas detected. The primary analysis was per protocol. We also analysed characteristics of polyps and adenomas missed initially by endoscopists but detected by the CADe system. This trial is complete and is registered with http://www.chictr.org.cn, ChiCTR1800017675. FINDINGS: Between Sept 3, 2018, and Jan 11, 2019, 1046 patients were enrolled to the study, of whom 36 were excluded before randomisation, 508 were allocated colonoscopy with polyp detection using the CADe system, and 502 were allocated colonoscopy with the sham system. After further excluding patients who met exclusion criteria, 484 patients in the CADe group and 478 in the sham group were included in analyses. The ADR was significantly greater in the CADe group than in the sham group, with 165 (34%) of 484 patients allocated to the CADe system having one or more adenomas detected versus 132 (28%) of 478 allocated to the sham system (odds ratio 1·36, 95% CI 1·03-1·79; p=0·030). No complications were reported among all colonoscopy procedures. Polyps initially missed by the endoscopist but identified by the CADe system were generally small in size, isochromatic, flat in shape, had an unclear boundary, were partly behind colon folds, and were on the edge of the visual field. INTERPRETATION: Polyps initially missed by the endoscopist had characteristics that are sometimes difficult for skilled endoscopists to recognise. Such polyps could be detected using a high-performance CADe system during colonoscopy. The effect of CADe during colonoscopy on the incidence of interval colorectal cancer should be investigated. FUNDING: None.

7.
Water Res ; 171: 115456, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927091

RESUMO

This study investigated the regeneration of phenol saturated activated carbon fiber (ACF) with a novel electro-peroxydisulfate (E-PDS) process. Compared with traditional electrochemical regeneration, E-PDS process could simultaneously regenerate the exhausted ACF and mineralize desorbed contaminants by activating PDS in water with a much lower energy consumption (1/6). According to the estimation of relative contributions involved in E-PDS process, reactive oxygen species (ROS), especially sulfate radical (SO4•-), played a dominant role in the degradation of phenol and its byproducts. It was worth noting that the accumulation of byproducts in solution increased significantly after SO4•- concentration decreased in aqueous solution. Further study proved that the regeneration efficiency of ACF could be improved by the application of multiple doses of PDS for the effective reduction of byproduct accumulation. However, application of multiple doses of PDS could not prevent ACF from being oxidized by ROS generated in the system, subsequently leading to loss of ACF adsorption capacity. This limitation is a significant concern in treatment technologies based on carbon materials activated by peroxides and such technologies should be studied further to obtain additional insights on their potential and applicability in industrial practice. Nevertheless, the adsorption capacity of ACF remained above 40% after three regeneration cycles in the E-PDS process. Therefore, E-PDS process showed promise for further evaluation as a potentially viable approach for the regeneration of carbons saturated with organic pollutants.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Fibra de Carbono , Eletrodos , Oxirredução , Fenol
8.
Adv Exp Med Biol ; 1217: 211-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31898230

RESUMO

The ubiquitin proteasome pathway is one of the major regulatory tools used by eukaryotic cells. The evolutionarily conserved cullin family proteins can assemble as many as >600 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. In most of Cullin-RING ubiquitin ligase (CRL) complexes, separate linker and adaptor proteins build the substrate recognition module. Differently, a single BTB-containing adaptor molecule utilizing two protein interaction sites can link the CUL3 scaffold to the substrate, forming as many as 188 CUL3-BTB E3 ligase complexes in mammals. Here, we review the most recent studies on CRL3 complexes, with a focus on the model for CUL3 assembly with its BTB-containing substrate receptors. Also, we summarize the current knowledge of CRL3 substrates and their relevant biological functions. Next, we discuss the mutual exclusivity of somatic mutations in KEAP1, NRF2, and CUL3 in human lung cancer. Finally, we highlight new strategies to expand CUL3 substrates and discuss outstanding questions remaining in the field.

9.
Sensors (Basel) ; 20(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963912

RESUMO

A visual-inertial odometer is used to fuse the image information obtained by a vision sensor with the data measured by an inertial sensor and recover the motion track online in a global frame. However, in an indoor environment, geometric transformation, sparse features, illumination changes, blurring, and noise will occur, which will either cause a reduction in or failure of the positioning accuracy. To solve this problem, a map matching algorithm based on an indoor plane structure map is proposed to improve the positioning accuracy of the system; this algorithm was implemented using a conditional random field model. The output of the attitude information from the visual-inertial odometer was used as the input of the conditional random field model. The feature function between the attitude information and the expected value was established, and the maximum probabilistic value of the attitude was estimated. Finally, the closed-loop feedback correction of the visual-inertial system was carried out with the probabilistic attitude value. A number of experiments were designed to verify the feasibility and reliability of the positioning method proposed in this paper.

10.
Sci Rep ; 10(1): 1365, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992829

RESUMO

Non-enzymatic electrodes based on noble metals have excellent selectivity and high sensitivity in glucose detection but no such shortcomings as easy to be affected by pH, temperature, and toxic chemicals. Herein, spherical gold-nickel nanoparticles with a core-shell construction (Au@Ni) are prepared by oleylamine reduction of their metal precursors. At an appropriate Au/Ni ratio, the core-shell Au@Ni nanoparticles as a sensor for glucose detection combine the high electrocatalytic activity, good selectivity and biological compatibility of Au with the remarkable tolerance of Ni for chlorine ions (Cl-) and poisoning intermediates in catalytic oxidation of glucose. This electrode exhibits a low operating voltage of 0.10 V vs. SCE for glucose oxidation, leading to higher selectivity compared with other Au- and Ni-based sensors. The linear range for the glucose detection is from 0.5 mmol L-1 to 10 mmol L-1 with a rapid response time of ca. 3 s, good stability, sensitivity estimated to be 23.17 µA cm-2 mM-1, and a detection limit of 0.0157 mM. The sensor displays high anti-toxicity, and is not easily poisoned by the adsorption of Cl- in solution.

11.
Am J Physiol Cell Physiol ; 318(1): C48-C62, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618077

RESUMO

We recently published that type 2 diabetes promotes cell centrosome amplification via upregulation of Rho-associated protein kinase 1 (ROCK1) and 14-3-3 protein-σ (14-3-3σ). This study further investigates the molecular mechanisms underlying diabetes-associated centrosome amplification. We found that treatment of cells with high glucose, insulin, and palmitic acid levels increased the intracellular and extracellular protein levels of Wingless-type MMTV integration site family member 6 (Wnt6) as well as the cellular level of ß-catenin. The treatment also activated ß-catenin and promoted its nuclear translocation. Treatment of cells with siRNA species for Wnt6, Frizzled-4 (FZD4), or ß-catenin as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture medium could all attenuate the treatment-triggered centrosome amplification. Moreover, we showed that secreted Wnt6-FZD4-ß-catenin was the signaling pathway that was upstream of ROCK1 and 14-3-3σ. We found that advanced glycation end products (AGEs) were also able to increase the cellular and extracellular levels of Wnt6, the cellular protein level of ß-catenin, and centrosome amplification. Treatment of the cells with siRNA species for Wnt6 or FZD4 as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture could all inhibit the AGEs-elicited centrosome amplification. In colon tissues from a diabetic mouse model, the protein levels of Wnt6 and 14-3-3σ were increased. In conclusion, our results showed that the pathophysiological factors in type 2 diabetes, including AGEs, were able to induce centrosome amplification. It is suggested that secreted Wnt6 binds to FZD4 to activate the canonical Wnt6 signaling pathway, which is upstream of ROCK1 and 14-3-3σ, and that this is the cell signaling pathway underlying diabetes-associated centrosome amplification.

12.
Mar Pollut Bull ; 150: 110594, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31727316

RESUMO

Ocean acidification (OA) and heavy metals are common stress factors for marine ecosystems subject to anthropogenic impacts. OA coupled with the heavy metal is likely to affect marine species. This study investigated the single and combined effects of OA (1500 ppm) and cadmium (Cd; 0.4, 1.2 mg/L) on the marine diatom Phaeodactylum tricornutum under 7 d exposure. The results clearly indicated that either OA or Cd stress (1.2 mg/L) alone inhibited the growth of P. tricornutum. However, under the combined OA-Cd stress, the growth inhibition disappeared, and the intracellular oxidative damage was mitigated. These results indicated a significantly enhanced tolerance of P. tricornutum to Cd while under OA conditions, which could be beneficial to the survival of this diatom. This study will ultimately help us understand the responses of marine organisms to multiple stressors and have broad implications for the potential ecological risks of Cd under future OA conditions.

13.
Chemosphere ; 241: 125030, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31606000

RESUMO

Persistent organic pollutants (POPs) have been associated with a high risk of type 2 diabetes in different regions, although few studies from China have been published. We aimed to investigate the associations between POP exposure and type 2 diabetes in Chinese population. A total of 158 participants diagnosed with type 2 diabetes and 158 participants without the disorder from Shandong Province were enrolled in this case-control study during 2016-2017. Nine polychlorinated biphenyl congeners (PCBs) and 2 polybrominated diphenyl ethers with detectable levels in ≥75% of the participants were selected for data analysis. The results showed that POP exposure was significantly and positively associated with the risk of diabetes after adjusting for age, sex, BMI, triglycerides and total cholesterol. However, we did not observe an obvious modified effect of adiposity on the associations between POP exposure and diabetes in the present study, as strong associations between POPs and diabetes were observed in both the higher-BMI (BMI≥25 kg/m2) and the lower-BMI (BMI<25 kg/m2) groups. POPs showed stronger associations with diabetes in males than in females. The odds ratio (OR) for the highest quartile of ∑POPs was 6.97 for males, nearly two times higher than that for females (OR = 3.58). All these findings suggest that POP exposure may impact the risk of diabetes in Chinese population.

14.
Ecotoxicol Environ Saf ; 190: 110125, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887706

RESUMO

Organochlorine pesticides (OCPs) have been reported to be associated with an elevated risk of type 2 diabetes, although no study has focused on such associations in Chinese populations. In this case-control study, we aimed to explore the associations between OCPs and type 2 diabetes and their potential mechanisms in a population from East China. Participants diagnosed with type 2 diabetes and nondiabetic participants from Shandong Province, East China, were enrolled in this case-control study. Six OCPs (ß-HCH, trans-chlordane, trans-nonachlor, p,p'-DDE, p,p'-DDT and mirex/kepone) were detected in more than 75% of serum samples. Logistic regression analysis and multiple linear regression analysis were used to assess the associations between OCP exposure and the outcomes. After adjusting for potential confounding factors such as age, sex and body mass index, all six OCPs showed positive associations with type 2 diabetes in a linear dose-response manner. Serum concentrations of ß-HCH and p,p'-DDE were associated with higher levels of fasting plasma glucose in participants without diabetes, although no OCPs showed significant associations with hemoglobin A1c. In addition, certain OCPs showed significantly positive associations with triglycerides, total cholesterol, and low-density lipoprotein cholesterol and negative relationships with high-density lipoprotein cholesterol in nondiabetics, indicating that OCP exposure may disrupt lipid metabolism. Findings in the current study indicated that OCPs may be a diabetogenic factor in the population of this study. To our knowledge, this is the first study to investigate the associations between OCP exposure and type 2 diabetes in a Chinese population.

15.
Acta Biochim Biophys Sin (Shanghai) ; 52(1): 72-83, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844893

RESUMO

Type 2 diabetes increases the risk for cancer. Centrosome amplification can initiate tumorigenesis. We have described that type 2 diabetes increases the centrosome amplification of peripheral blood mononuclear cells, with high glucose, insulin, and palmitic acid as the triggers, which suggests that centrosome amplification is a candidate biological mechanism linking diabetes to cancer. In this study, we aimed to further investigate the signaling pathways of the diabetes-associated centrosome amplification and to examine whether and how resveratrol inhibits the centrosome amplification. The results showed that treatment with high glucose, insulin, and palmitic acid, alone or in combination, could increase the protein levels of phospho-protein kinase C alpha (p-PKCα), phospho-p38 mitogen-activated protein kinases (p-p38), c-myc, and c-jun, as well as the mRNA levels of c-myc and c-jun. PKCα inhibitor could inhibit the treatment-induced increase in the protein levels of p-p38, c-myc, and c-jun. Inhibitor or siRNA of p38 was also able to inhibit the treatment-induced increase in the levels of p-p38, c-myc, and c-jun. Meanwhile, knockdown of c-myc or c-jun did not alter the treatment-induced increase in the phosphorylation of PKCα or p38. Importantly, inhibition of the phosphorylation of PKCα or p38 and knockdown of c-myc or c-jun could attenuate the centrosome amplification. In diabetic mice, the levels of p-PKCα, p-p38, c-myc, and c-jun were all increased in the colon tissues. Interestingly, resveratrol, but not metformin, was able to attenuate the treatment-induced increase in the levels of p-PKCα, p-p38, c-myc, and c-jun, as well as the centrosome amplification. In conclusion, our results suggest that PKCα-p38 to c-myc/c-jun is the signaling pathway of the diabetes-associated centrosome amplification, and resveratrol attenuates the centrosome amplification by inhibiting this signaling pathway.

16.
Biosens Bioelectron ; 149: 111821, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733485

RESUMO

Hollow core anti-resonant fiber (HARF) has found a handful applications in optical communications, nonlinear optics and high power delivery. The intrinsic property of the fiber also renders it an ideal candidate for biosensing, which has not been explored intensively. Herein, we demonstrate an optical fiber sensing platform, taking advantages of the state-of-the-art HARF technology and superior physicochemical properties of 2D material black phosphorus, for ultra-sensitive detection of bisphenol A (BPA) in blood and environmental samples. The specially designed HARF can not only achieve broadband transmission of light, but also confine light in the low refractive-index liquid core, ensuring maximum overlap of light and liquid core. Modification of the inner surface of HARF with 2D black phosphorus nanoflakes functionalized with fluorescently labeled BPA-specific aptamer provides a smart sensing interface enabling highly selective detection of BPA via measuring the fluorescence. The limit of detection is 1.69pM, which is more than two orders of magnitude enhancement compared to the conventional plate assay. The proposed assay is not interfered with the BPA analogues BPB and BPS. The long optical path with tight optical confinement greatly enhances the analyte-light interaction and improves the sensitivity of the sensing platform. The proposed sensing platform can be further developed for versatile applications.

17.
Inorg Chem ; 59(1): 332-342, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31854988

RESUMO

In this paper, we systemically investigated the photoelectric properties of three new deep-red quinoxaline-based iridium(III) complexes: Ir-0, Ir-1, and Ir-2. (MPQ)2Ir(dpm) (Ir-0) bore a 2-methyl-3-phenylquinoxaline cyclometalated ligand, while (c-PyMPQ)2Ir(dpm) (Ir-1) and (t-PyMPQ)2Ir(dpm) (Ir-2) possessed a 1-pyrene substituent that connected at the 6/7 position of the corresponding ligands. The configurations of the latter two complexes were well-confirmed by single-crystal X-ray diffraction, and both of them had large dihedral angles between the quinoxaline and pyrene units, preventing the emission peaks of the three complexes from being altered too much. Based on the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, we concluded that the emission of all complexes originated predominantly from the triplet metal-to-ligand/intraligand charge transfer (3MLCT/3ILCT) state of the non-pyrene-substituted counterpart Ir-0 core. Interestingly, we also obtained another type of pyrene-stacking characteristic crystal of Ir-1, which had an emission resembled the phosphorescence observed in thin film. The easily formed pyrene-stacking configuration would most probably limit their device performance at a higher concentration. Moreover, the fabricated organic light-emitting diodes (OLEDs) using these materials achieved considerable device performance at a low doping concentration of 0.5 wt %. This work provides an approach for reasonably designing large fused-ring-substituted quinoxaline ligands of iridium complexes.

18.
Phytother Res ; 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31828866

RESUMO

High levels of consumption of saturated lipids have been largely associated with the increasing prevalence of metabolic diseases. In particular, saturated fatty acids such as palmitic acid (PA) have been implicated in the development of insulin resistance (IR). Scutellarin (Scu) is one of the effective traditional Chinese medicines considered beneficial for liver diseases and diabetes. In this study, we investigated the effect of Scu on IR and lipid metabolism disorders in vitro and in high fat diet (HFD)-fed mice. In vitro, we found that Scu decreased insulin-dependent lipid accumulation and the mRNA expression of CD36, Fasn, and ACC in PA-treated HepG2 cells. Additionally, Scu upregulated Akt phosphorylation and improved the insulin signalling pathway. Moreover, Scu downregulated mammalian target of rapamycin (mTOR) phosphorylation and the n-SREBP-1c protein level and also reduced lipid accumulation via the mTOR-dependent pathway, as confirmed by the molecular docking of Scu to mTOR. In HFD-fed C57BL/6 mice, Scu improved oral glucose tolerance, pyruvate tolerance and the IR index and also increased the Akt phosphorylation level. Moreover, Scu reduced hepatocyte steatosis, decreased lipid accumulation and triglyceride levels, inhibited mTOR phosphorylation, and decreased the SREBP-1c level in the liver. Taken together, these findings suggest that Scu ameliorates hepatic IR by regulating hepatocyte lipid metabolism via the mTOR-dependent pathway through SREBP-1c suppression.

19.
Plant Cell Environ ; 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31851373

RESUMO

During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.

20.
Top Curr Chem (Cham) ; 378(1): 9, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31879793

RESUMO

Asymmetric metal/organo relay catalysis, utilizing a metal complex and a chiral organocatalyst in a one-pot cascade reaction, is aimed to sequentially impart activation on multiple steps by distinct catalysts. Such a catalysis merges the advantages of both metal catalysis and organocatalysis, providing step-economy, and, more importantly, the potential to achieve inaccessible reactivity by a single catalyst. Chiral phosphoric acids are among the most robust organocatalysts, rendering a broad range of enantioselective bond-forming reactions. The combination of metal complexes and chiral phosphoric acids in a single vessel has been well documented. In particular, the asymmetric relay catalysis of metal complex with chiral phosphoric acid has grown rapidly since 2008. Several excellent reviews have been published to cover almost all examples in this area from 2008 to early 2014; therefore, in this chapter, we will mainly highlight progress from 2014 to mid-2019.


Assuntos
Complexos de Coordenação/química , Ácidos Fosfóricos/química , Catálise , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA