Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
1.
BMC Plant Biol ; 22(1): 144, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337273

RESUMO

Sophora davidii is an important plant resource in the karst region of Southwest China, but S. davidii plant-height mutants are rarely reported. Therefore, we performed phenotypic, anatomic structural, transcriptomic and metabolomic analyses to study the mechanisms responsible for S. davidii plant-height mutants. Phenotypic and anatomical observations showed that compared to the wild type, the dwarf mutant displayed a significant decrease in plant height, while the tall mutant displayed a significant increase in plant height. The dwarf mutant cells were smaller and more densely arranged, while those of the wild type and the tall mutant were larger and loosely arranged. Transcriptomic analysis revealed that differentially expressed genes (DEGs) involved in cell wall biosynthesis, expansion, phytohormone biosynthesis, signal transduction pathways, flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched in the S. davidii plant-height mutants. Metabolomic analysis revealed 57 significantly differential metabolites screened from both the dwarf and tall mutants. A total of 8 significantly different flavonoid compounds were annotated to LIPID MAPS, and three metabolites (chlorogenic acid, kaempferol and scopoletin) were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. These results shed light on the molecular mechanisms of plant height in S. davidii mutants and provide insight for further molecular breeding programs.


Assuntos
Sophora , Transcriptoma , Perfilação da Expressão Gênica , Metabolômica , Reguladores de Crescimento de Plantas/metabolismo , Sophora/genética , Sophora/metabolismo
2.
Nat Commun ; 13(1): 6685, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335126

RESUMO

Single cell analysis is crucial for elucidating cellular diversity and heterogeneity as well as for medical diagnostics operating at the ultimate detection limit. Although superbly sensitive biosensors have been developed using the strongly enhanced evanescent fields provided by optical microcavities, real-time quantification of intracellular molecules remains challenging due to the extreme low quantity and limitations of the current techniques. Here, we introduce an active-mode optical microcavity sensing stage with enhanced sensitivity that operates via Förster resonant energy transferring (FRET) mechanism. The mutual effects of optical microcavity and FRET greatly enhances the sensing performance by four orders of magnitude compared to pure Whispering gallery mode (WGM) microcavity sensing system. We demonstrate distinct sensing mechanism of FRET-WGM from pure WGM. Predicted lasing wavelengths of both donor and acceptor by theoretical calculations are in perfect agreement with the experimental data. The proposed sensor enables quantitative molecular analysis at single cell resolution, and real-time monitoring of intracellular molecules over extended periods while maintaining the cell viability. By achieving high sensitivity at single cell level, our approach provides a path toward FRET-enhanced real-time quantitative analysis of intracellular molecules.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Técnicas Biossensoriais/métodos
3.
Transl Pediatr ; 11(10): 1682-1696, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36345450

RESUMO

Background: Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children. Methods: Differential analysis was employed to identify the differentially expressed lncRNAs, as well as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. Spearman's correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the peripheral blood samples of children with HSPN. Results: By intersecting the differentially expressed immune-related and apoptosis-related genes through GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the specific regulatory network may act as potential biomarkers with prognosis in children with HSPN. Conclusions: LncRNAs may play essential regulatory roles in the occurrence and development of HSPN in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in children.

4.
Opt Express ; 30(23): 41171-41180, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366601

RESUMO

A high-average-power, high-pulse-energy picosecond chirped pulse amplification (CPA) laser system based on an extra-large-mode-area (XLMA) triple-clad fiber (TCF) was demonstrated. The ultrashort pulses, generated from all-fiber mode-locked oscillator, stretched and then were pre-amplified to 10 W through a series of fiber power amplifiers. Subsequently, the average output power was amplified to 620 W corresponding to a pulse energy of 0.62 mJ via XLMA TCF. Additionally, the amplified pulses were compressed to a pulse duration of 7.6 ps with an average power of 423 W and a compression efficiency of 68.2%. The ultrashort laser is a promising light source for application of water-guided laser processing, albeit with a beam quality factor of 20 and 21 along two orthogonal axes.

5.
J Phys Chem A ; 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413485

RESUMO

Metal displacement reaction is widely used for preparing alloy nanomaterials. In this study, the mechanism of anti-galvanic metal displacement reaction between the atomic precision [Au25(SC2H4Ph)18]- cluster and the metal-thiolate complexes SR-M-SR (M = Ag, Cd, and Hg) is studied based on dispersion correction density functional theory (DFT-D) calculations. The present study reveals that the metal displacement reaction of the Au25 cluster is carried out through two-stage metal diffusion including the rapid diffusion of the metal heteroatom from metal thiolate to the ligand layer of Au25 cluster and then gradual diffusion of the metal heteroatom into the icosahedral 13-atom core. The atomic charge analysis confirms that the SR group plays a crucial role. Due to the partial reducibility of SR group, it can nucleophilic attack Au atom to result in the fracture of the Au-S bond in the ligand layer and the formation of atomic vacancy on the surface of the metal core, which facilitates the metal heteroatom diffusion from the metal-SR complex to the ligand layer of gold cluster and then to the surface of gold core.

6.
Anal Chem ; 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378527

RESUMO

Bioaerosols could carry and spread harmful microorganisms, thus posing a continuous threat to human beings and livestock health. Early warning and management are crucial for controlling the spread of bioaerosols. Herein, we developed a split aptamer (SA)-based electrochemical nanosensor chip (denoted SAE-nChip) for rapid and sensitive detection of adenosine triphosphate (ATP) in bioaerosols. The platform features two components: split DNA aptamers for their ability to bind ATP and undergo target-induced assembly on the chip surface and ZIF-8@MXene composites for their ability to provide a high surface density of aptamer-binding sites and facilitate the electron transfer at the biointerface. The SAE-nChip was capable of detecting ATP with a detection limit of 10 pM. Furthermore, this assay allowed the detection of ATP in cultured microorganisms and collected real bioaerosols. Overall, this strategy of interfacing DNA aptamers with MXene-based composite materials represents a versatile approach for the ubiquitous detection of biochemical targets in bioaerosols.

7.
Animals (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359077

RESUMO

Neosporosis is caused by Neospora caninum (N. caninum), which mainly infects cattle and goats and severely threatens the animal industry. In this study, the inhibitory effects of polyclonal antiserum anti-NcSRS17, NcSRS2 and NcSRS52 were explored. Cytokines in mice or goat serum were detected after immunization. After infection, the survival of mice was recorded. The pathological changes and parasite loads were observed and detected in tissues. The results showed that anti-NcSRS2, NcSRS17 and NcSRS52 antibodies all inhibit the invasion and proliferation of N. caninum. The IFN-γ level in the NcSRS17 group was higher than that in the NcSRS2 and NcSRS52 groups, and higher in the NcSRS2-mIL-18 group than in the NcSRS2 group. The survival rates of mice were 16% in the positive control group, 67% in the SRS52 group, 83% in the SRS2 and mIL-18 groups and 100% in the SRS17 and SRS2-mIL-18 groups. Goats immunized with NcSRS17-gIL-18 developed high levels of IL-4, IL-12 and IFN-γ compared with those immunized with NcSRS-17. Parasite loads in the brains of animals in the NcSRS17 and NcSRS17-gIL-18 groups were significantly reduced, and were significantly lower in the NcSRS17-gIL-18 group (p ≤ 0.01). This study indicates that SRS17 may be an antigen candidate for vaccine development against neosporosis, and IL-18 can enhance the immune protective efficiency of antigen candidates.

8.
BMC Plant Biol ; 22(1): 530, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380271

RESUMO

BACKGROUND: The rich yellow-orange to vividly deep red bark of willow (Salix spp.) branches have high ornamental and economic value. However, the mechanism underlying the regulation of willow branch color remains unknown. Therefore, we performed metabolomics and transcriptomics analyses of purple, green, and red willow barks to elucidating the mechanisms regulating color development. RESULTS: Seven anthocyanins were isolated; pelargonidin, petunidin 3-O-rutinoside, and cyanin chloride were the most abundant in red bark, whereas pelargonin chloride was most abundant in purple bark. The green bark contained the highest level of malvidin; however, the malvidin level was not significantly higher than in the red bark. The purple bark contained the largest amount of canthaxanthin, a carotenoid pigment. The integrated pathways of flavonoid biosynthesis, carotenoid biosynthesis, and porphyrin and chlorophyll metabolism were constructed for the willow barks. Among the three barks, the expression of the structural genes ANS, ANR, and BZ1, which are involved in anthocyanin synthesis, was the highest in red bark, likely causing anthocyanin accumulation. The expression of CrtZ, which participates in the carotenoid pathway, was the highest in purple bark, likely leading to canthaxanthin accumulation. The high expression of DVR, POR, and CRD1 may be associated with green pigment synthesis in the chlorophyll biosynthesis pathway. CONCLUSIONS: Purple bark color is co-regulated by anthocyanins and carotenoids, whereas red bark is characterized by anthocyanin accumulation and chlorophyll degradation. The green pigment is regulated by maintaining chlorophyll synthesis. BZ1 and CrtZ are candidate genes regulating anthocyanin and canthaxanthin accumulation in red and purple barks respectively. Collectively, our results may facilitate the genetic breeding and cultivation of colorful willows with improved color and luster.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Transcriptoma , Cantaxantina , Cloretos , Cor , Melhoramento Vegetal , Carotenoides , Clorofila
9.
Artigo em Inglês | MEDLINE | ID: mdl-36361214

RESUMO

OBJECTIVE: The dorsolateral prefrontal cortex (dlPFC) is strongly associated with mood symptoms. This study used functional near-infrared spectroscopy (fNIRS) technology to explore the features of brain neural activity in the dlPFC of anxious and depressed college students, during an emotional autobiographical memory task, and to understand the differences in brain cognitive mechanisms caused by anxiety and depression. METHODS: A simple random sampling method was used to test 440 college students at a university with a healthy control group (HC, 220 participants), a pure depression group (PD, 92 participants), and a pure anxiety group (PA, 128 participants). The average oxyhemoglobin in the dlPFC of the subjects during the emotional autobiographical memory task was collected by a 53-channel functional near-infrared spectroscopy imaging device. RESULTS: The activation of the left dlPFC (ch13) in the pure depression group was significantly higher than in the pure anxiety group. The activation of the right dlPFC (ch48) was significantly higher under positive emotions than under negative emotions. The interaction between emotion valence and group was marginally significant, and the activation of the right dlPFC (ch41) in the pure depression group was significantly higher under positive emotion than in negative emotion. The activation of the pure depression group under positive emotions was significantly higher than that of the pure anxiety group. In comparison, the activation of the pure depression group under negative emotions was significantly lower than that of the healthy control group. The results of correlation analysis showed that the activation of the left dlPFC (ch13) was significantly negatively correlated with anxiety in positive emotions, but the activation of the right dlPFC (ch34, ch42) was significantly positively correlated with anxiety in positive and negative emotions. CONCLUSIONS: The right dlPFC was insensitive to positive emotions in college students with high-anxiety symptoms, whereas this region was insensitive to negative emotions in college students with high depressive symptoms, which might be one of the critical differences in the cognitive mechanisms of anxiety and depression. Furthermore, left and right dlPFC activation correlated differently with anxiety. The higher the anxiety level, the lower the activation on the left side, and the higher the activation on the right side. The results suggested that anxiety might reduce the function of the left dlPFC.


Assuntos
Emoções , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Emoções/fisiologia , Ansiedade , Afeto/fisiologia , Estudantes
10.
Artigo em Inglês | MEDLINE | ID: mdl-36361475

RESUMO

Antioxidants are prevalently used during rubber production to improve rubber performance, delay aging, and extend service life. However, recent studies have revealed that their transformation products (TPs) could adversely affect environmental organisms and even lead to environmental events, which led to great public concern about environmental occurrence and potential impacts of rubber antioxidants and their TPs. In this review, we first summarize the category and application of rubber antioxidants in the world, and then demonstrate the formation mechanism of their TPs in the environment, emphasizing their influence on the ozone oxidative degradation. The potential toxic effects of antioxidants and their TPs are further reviewed to improve understanding of their biological health impact and environmental risks. Finally, the environmental occurrences of antioxidants and their TPs are summarized and their environmental impacts are demonstrated based on the recent studies. Due to the currently limited understanding on the toxic and biological effects of these compounds, further studies are required in order to better assess various TPs of these antioxidants and their environmental impact. To our knowledge, this is the first review on antioxidants and their TPs in the environment, which may elevate the environmental risk awareness of rubber products and their TPs in the near future.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Borracha/toxicidade , Antioxidantes
11.
Artigo em Inglês | MEDLINE | ID: mdl-36399016

RESUMO

Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C-H bonds and commonly available amines is a major synthetic challenge. An allylic C-H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.

12.
Life (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36362985

RESUMO

Populus is a genus of globally significant plantation trees used widely in industrial and agricultural production. Poplars are easily damaged by Micromelalopha troglodyta and Hyphantria cunea, resulting in decreasing quality. Bt toxin-encoded by the Cry gene has been widely adopted in poplar breeding because of its strong insect resistance. There is still no comprehensive and sufficient information about the effects of Cry1Ah1-modified (CM) poplars on the ecological environment. Here, we sampled the rhizosphere soils of field-grown CM and non-transgenic (NT) poplars and applied 16S rRNA and internal transcribed spacer amplicon Illumina MiSeq sequencing to determine the bacterial community associated with the CM and NT poplars. Based on the high-throughput sequencing of samples, we found that the predominant taxa included Proteobacteria (about 40% of the total bacteria), Acidobacteria (about 20% of the total bacteria), and Actinobacteria (about 20% of the total bacteria) collected from the natural rhizosphere of NT and CM poplars. In addition, studies on the microbial diversity of poplar showed that Cry1Ah1 expression has no significant influence on rhizosphere soil alkaline nitrogen, but significantly affects soil phosphorus, soil microbial biomass nitrogen, and carbon. The results exhibited a similar bacterial community structure between CM varieties affected by the expression of Cry1Ah1 and non-transgenic poplars. In addition, Cry1Ah1 expression revealed no significant influence on the composition of rhizosphere microbiomes. These results broadly reflect the effect of the Bt toxin-encoded by Cry1Ah1 on the ecology and environment and provide a clear path for researchers to continue research in this field in the future.

13.
Front Microbiol ; 13: 1037708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439840

RESUMO

Background: Akkermansia muciniphila is a member of the gut microbiome, using mucin as sources of carbon, nitrogen, and energy. Since the first discovery of this unique bacterium in 2004, A. muciniphila has been extensively studied. It is considered a promising "next-generation beneficial microbe." The purpose of this paper is to sort out the research status and summarize the hotspots through bibliometric analysis of the publications of A. muciniphila. Methods: The publications about A. muciniphila from January 2004 to February 2022 were obtained from the Web of Science Core Collection. Visualization analyses were performed using three bibliometric tools and GraphPad Prism. Results: A total of 1,478 published documents were analyzed. Annual publication number grew from 1 in 2004 to 336 in 2021, with China being the leading producer (33.36%). De Vos, Willem M was the most productive author with the highest H-index (documents = 56, H-index = 37), followed by Cani, Patrice D (documents = 35, H-index = 25). And Scientific Reports published the most papers. PNAS was the keystone taxa in this field, with high betweenness centrality (0.11) and high frequency. The keywords with high frequency in recent years include: oxidative stress, diet, metformin, fecal microbiota transplantation, short-chain fatty acids, polyphenols, microbiota metabolites and so on. The keyword "oxidative stress" was observed to be increasing in frequency recently. Conclusion: Over time, the scope of the research on the clinical uses of A. muciniphila has gradually increased, and was gradually deepened and developed toward a more precise level. A. muciniphila is likely to remain a research hotspot in the foreseeable future and may contribute to human health.

14.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366195

RESUMO

In recent years, with the diversification of people's modes of transportation, a large amount of traffic data is generated when people travel every day, and this data can help transportation mode detection to be of great use in a variety of applications. Although transportation mode detection has been investigated, there are still challenges in terms of accuracy and robustness. This paper presents a novel transportation mode detection algorithm, DFTrans, which is based on Temporal Block and Attention Block. Low- and high-frequency components of traffic sequences are obtained using discrete wavelet transforms. A two-channel encoder is carefully designed to accurately capture the temporal and spatial correlation between low- and high-frequency components in both long- and short-term patterns. With the Temporal Block, the inductive bias of the CNN is introduced at high frequencies to improve generalization performance. At the same time, the network is generated with the same length as the input, ensuring a long effective history. Low frequencies are passed through Attention Block, which has fewer parameters to capture the global focus and solves the problem that RNNs cannot be computed in parallel. After fusing the output of the feature by Temporal Block and Attention Block, the classification results are output by MLP. Extensive experimental results show that the DFTrans algorithm achieves macro F1 scores of 86.34% on the real-world SHL dataset and 87.64% on the HTC dataset. Our model can better identify eight modes of transportation, including stationary, walking, running, cycling, bus, car, underground, and train, and has better performance in transportation mode detection than other baseline algorithms.


Assuntos
Ciclismo , Meios de Transporte , Humanos , Meios de Transporte/métodos , Caminhada , Viagem , Algoritmos
15.
Opt Express ; 30(15): 27912-27925, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236950

RESUMO

In continuous-variable quantum key distribution (CV-QKD), the key information are encoded on quadratures of the optical field, which are measured via balanced homodyne detector (BHD). The bandwidth of the BHD is one of key parameters for precise characterization of quantum states. We establish a theoretical model to analyze the impact of the BHD bandwidth and signal modulation patterns on the channel parameters estimation of CV-QKD systems. Based on the proposed model, the secure key rate of a practical CV-QKD system under different BHD bandwidths and signal modulation patterns are investigated. Our results show that insufficient BHD bandwidth will result in wrong estimate of the transmission loss and excess noise, which significantly affects the performance of CV-QKD systems. Given the BHD bandwidth, there exists an optimal signal repetition rate that maximizes the secure key rate. The BHD bandwidth requirement of the QKD system increases with the transmission distance for large duty cycle pulse. Furthermore, the root raised-cosine pulse signal modulation performs better than the square pulse signal modulation in general.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36237168

RESUMO

BACKGROUND: Sarcopenia is a common and progressive skeletal muscle disorder characterized by atrophic muscle fibres and contractile dysfunction. Accumulating evidence shows that the number and function of satellite cells (SCs) decline and become impaired during ageing, which may contribute to impaired regenerative capacity. A series of myokines/small extracellular vesicles (sEVs) released from muscle fibres regulate metabolism in muscle and extramuscular tissues in an autocrine/paracrine/endocrine manner during muscle atrophy. It is still unclear whether myokines/sEVs derived from muscle fibres can affect satellite cell function during ageing. METHODS: Aged mice were used to investigate changes in the myogenic capacity of SCs during ageing-induced muscle atrophy. The effects of atrophic myotube-derived sEVs on satellite cell differentiation were investigated by biochemical methods and immunofluorescence staining. Small RNA sequencing was performed to identify differentially expressed sEV microRNAs (miRNAs) between the control myotubes and atrophic myotubes. The target genes of the miRNA were predicted by bioinformatics analysis and verified by luciferase activity assays. The effects of identified miRNA on the myogenic capacity of SCs in vivo were investigated by intramuscular injection of adeno-associated virus (AAV) to overexpress or silence miRNA in skeletal muscle. RESULTS: Our study showed that the myogenic capacity of SCs was significantly decreased (50%, n = 6, P < 0.001) in the tibialis anterior muscle of aged mice. We showed that atrophic myotube-derived sEVs inhibited satellite cell differentiation in vitro (n = 3, P < 0.001) and in vivo (35%, n = 6, P < 0.05). We also found that miR-690 was the most highly enriched miRNA among all the screened sEV miRNAs in atrophic myotubes [Log2 (Fold Change) = 7, P < 0.001], which was verified in the atrophic muscle of aged mice (threefold, n = 6, P < 0.001) and aged men with mean age of 71 ± 5.27 years (2.8-fold, n = 10, P < 0.001). MiR-690 can inhibit myogenic capacity of SCs by targeting myocyte enhancer factor 2, including Mef2a, Mef2c and Mef2d, in vitro (n = 3, P < 0.05) and in vivo (n = 6, P < 0.05). Specific silencing of miR-690 in the muscle can promote satellite cell differentiation (n = 6, P < 0.001) and alleviate muscle atrophy in aged mice (n = 6, P < 0.001). CONCLUSIONS: Our study demonstrated that atrophic muscle fibre-derived sEV miR-690 may inhibit satellite cell differentiation by targeting myocyte enhancer factor 2 during ageing.

17.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234597

RESUMO

Simultaneously engineering a bowl-like and ultrafine nano-size structure offers an attractive route to not only increase the utilization efficiency of noble metals, the specific surface areas and the availability of active sites, but also boost the structural robustness and long-term stability. However, a great challenge remains in terms of the methods of synthesis. Herein, we report a facile one-pot hydrothermal method for the preparation of hollow porous Pt nanobowls (NBs) assembled from ultrafine particles. N,N'-methylenebisacrylamide (MBAA) acts as a structure-directing agent that forms a self-template with Pt ions and drives the nucleation and assembly of Pt metals, resulting in the fabrication of Pt NBs from ultrafine particles. By virtue of their unique structure and morphology, the optimized Pt NBs exhibited enhanced electrocatalytic methanol oxidation reaction (MOR) activity with 3.1-fold greater mass activity and 2.6-fold greater specific activities compared with those of commercial Pt black catalysts, as well as excellent stability and anti-poisoning ability.

18.
Opt Express ; 30(19): 33538-33553, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242387

RESUMO

Laser-induced coloration on a metallic surface has been of interest to many application arweas. However laser machining of metals involves many complex problems including nonlinear unstable coupled with multiple factors. Therefore there are still some significant challenges in the precise control of color creation. Here we explored the process of the laser-induced coloration and find the connection between surface colors and processing parameters. The Response Surface Methodology (RSM) based experimental design was adopted to explore the influence of the single processing parameter and the interaction between parameters on color changes of titanium. The results showed that the scanning speed laser power repetition rate and hatch distance had significant effects on color changes of titanium. Then we demonstrated that using artificial neural network (ANN) is an effective solution of nonlinear problems in laser-induced coloration which can match the processing parameters and the L*a*b* color values on titanium surface precisely with limited experiments. Finally we successfully used the processing parameters estimated by ANN model to create unique art painting on titanium with nanosecond pulsed laser. This work can provide a potential method to solve the problem in the color consistency and open a new perspective in industrial application of laser-induced coloration technology.

20.
J Clin Med ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233745

RESUMO

Previous studies suggest that regions of corneal limbus may possess structural differences. We aimed to investigate the limbal changes associated with pterygium and aging via optical coherence tomography (OCT). Palisades of Vogt epithelial thickness (POV-ET) and Bowman's membrane epithelial thickness (BM-ET) were measured at the nasal, temporal, superior, and inferior quadrants of patients with pterygium and healthy subjects of different ages. Values were expressed as a ratio that functioned as an index used to evaluate the change of limbus. Ratio values determined for quadrants of the corneal limbus were correlated highly in young healthy subjects. Further, parameter values were significantly greater than those of elder healthy subjects. In young subjects, the temporal and superior quadrants of patients with pterygium were significantly lower than those of healthy subjects. Temporal and superior quadrants of elder pterygium patients affected by both pterygium and age were significantly lower than those of healthy subjects; however, the inferior quadrant of elderly pterygium patients was significantly higher than that of age-matched healthy subjects. Our findings revealed that the thickness of limbal epithelium was negatively correlated with age, while pterygium led to the thinning of the temporal and superior limbal epithelium and inferior limbal epithelial thickening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...