Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.633
Filtrar
1.
Opt Lett ; 49(10): 2641-2644, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748125

RESUMO

Mid-infrared (MIR) Si-based optoelectronics has wide potential applications, and its design requires simultaneous consideration of device performance optimization and the feasibility of heterogeneous integration. The emerging interest in all-dielectric metasurfaces for optoelectronic applications stems from their exceptional ability to manipulate light. In this Letter, we present our research on an InSb all-dielectric metasurface designed to achieve ultrahigh absorptivity within the 5-5.5 µm wavelength range. By integrating an InSb nanodisk array layer on a Si platform using wafer bonding and heteroepitaxial growth, we demonstrate three kinds of metasurface with high absorptivity of 98.36%, 99.28%, and 99.18%. The enhanced absorption is mainly contributed by the Kerker effect and the anapole state and the peak, with the added flexibility of tuning both the peak and bandwidth of absorption by altering the metasurface parameters. Our findings provide an alternative scheme to develop high-performance detectors and absorbers for MIR silicon photonics.

2.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732415

RESUMO

Phytochemical investigation of the bark of Cryptomeria japonica led to the isolation of five new abietane diterpenoids, 5-epi-12-hydroxy-6-nor-5,6-secoabieta-8,11,13-trien-7,5-olide (1), 12-hydroxy-6ß-methoxy-6,7-secoabieta-8,11,13-trien-7,6-olide (2), 6ß,12-dihydroxy-7,8-secoabieta-8,11,13-trien-7,8-olide (4), 5,12-dihydroxy-7,8-secoabieta-8,11,13-trien-7,8-olide (5), and 5α,8-epoxy-12-hydroxy-7,8-secoabieta-8,11,13-trien-7-al (6), together with one known abietane diterpenoid, obtuanhydride (3). Their structures were elucidated by analysis of spectroscopic data and comparison with the spectral data of known analogs. At the concentration of 100 µg/mL, compounds 4, 5, and 6 inhibited antifungal activities against wood decay fungi activity by 18.7, 37.2, and 46.7%, respectively.

3.
Genes Genomics ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733520

RESUMO

BACKGROUND: The apoptosis-resistant pulmonary arterial endothelial cells (PAECs) are known to be major players in the pulmonary remodeling of pulmonary arterial hypertension (PAH) and exhibit an abnormal metabolic profile with mitochondrial dysfunction. Mitochondrial fission has been shown to regulate the apoptosis of several cell types, but this is largely unexplored in the PAECs. OBJECTIVE: The roles of mitochondrial fission control by Dynamin related protein-1 (DRP1) in the development of PAECs apoptosis suppression were investigated in present study and the potential mechanisms behind this were furtherly explored. METHODS: The mitochondrial morphology was investigated in PAECs from PAH rats with the pulmonary plexiform lesions, and the relations of it with DRP1 expression and apoptosis were furtherly identified in apoptosis-resistant PAECs induced by hypoxia. PAECs were isolated from rats with severe PAH and from normal subjects, the apoptotic-resistant PAECs were induced by hypoxia. DRP1 gene knockdown was achieved via DRP1-siRNA, DRP1 and STAT3 phosphorylation were blocked using its inhibitors, respectively. Apoptosis was analyzed by flow cytometry, and mitochondrial morphology was investigated by transmission electron microscope and confocal microscopy. RESULTS: The PAECs isolated from PAH rats with the pulmonary plexiform-like lesions and displayed lower apoptotic rate with increased DRP1 expression and mitochondrial fragmentation. In addition, similar observations were achieved in apoptosis-resistant PAECs induced by hypoxia. Targeting DRP1 using siRNA and pharmacologic blockade prevented the mitochondrial fission and subsequent apoptotic resistance in PAECs under hypoxia. Mechanistically, STAT3 phosphorylation at Tyr705 was shown to be activated in both PAH and hypoxia-treated PAECs, leading to the regulation of DRP1 expression. Of importance, targeting STAT3Tyr705 phosphorylation prevented DRP1 disruption on apoptosis in PAECs under hypoxia. CONCLUSIONS: These data indicated that STAT3 phosphorylation at Tyr705 impacted DRP1-controlled mitochondrial fission during the development of apoptosis-resistance in PAECs, suggesting mitochondrial dynamics may represent a therapeutic target for PAH.

4.
EBioMedicine ; 103: 105142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691939

RESUMO

BACKGROUND: Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS: From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS: In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION: This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING: This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Idoso , Mutação , Biomarcadores Tumorais/genética , Adulto , Perfilação da Expressão Gênica , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Estadiamento de Neoplasias
5.
J Colloid Interface Sci ; 670: 279-287, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763024

RESUMO

Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.

6.
Biomacromolecules ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720431

RESUMO

Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38753528

RESUMO

OBJECTIVES: Detection of early neoplastic lesions is crucial for improving the survival rates of patients with gastric cancer. Optical enhancement mode 2 is a new image-enhanced endoscopic technique that offers bright images and can improve the visibility of neoplastic lesions. This study aimed to compare the detection of neoplastic lesions with optical enhancement mode 2 and white-light imaging (WLI) in a high-risk population. METHODS: In this prospective multicenter randomized controlled trial, patients were randomly assigned to optical enhancement mode 2 or WLI groups. Detection of suspicious neoplastic lesions during the examinations was recorded, and pathological diagnoses served as the gold standard. RESULTS: A total of 1211 and 1219 individuals were included in the optical enhancement mode 2 and WLI groups, respectively. The detection rate of neoplastic lesions was significantly higher in the optical enhancement mode 2 group (5.1% vs. 1.9%; risk ratio, 2.656 [95% confidence interval, 1.630-4.330]; p < 0.001). The detection rate of neoplastic lesions with an atrophic gastritis background was significantly higher in the optical enhancement mode 2 group (8.6% vs. 2.6%, p < 0.001). The optical enhancement mode 2 group also had a higher detection rate among endoscopists with different experiences. CONCLUSIONS: Optical enhancement mode 2 was more effective than WLI for detecting neoplastic lesions in the stomach, and can serve as a new method for screening early gastric cancer in clinical practice. CLINICAL REGISTRY: United States National Library of Medicine (https://www. CLINICALTRIALS: gov), ID: NCT040720521.

8.
Sci Total Environ ; 932: 173033, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723954

RESUMO

Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 µg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 µg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 µg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 µg/L PE exposure was 52.07 %, higher than under 500 µg/L (51.05 %) and 100 µg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.


Assuntos
Biofilmes , Reatores Biológicos , Microbiota , Nitrogênio , Polietileno , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Microbiota/efeitos dos fármacos , Microplásticos , Águas Residuárias/química
9.
Magn Reson Imaging ; 111: 168-178, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729227

RESUMO

OBJECTIVE: The early differential diagnosis of the postoperative recurrence or pseudoprogression (psPD) of a glioma is of great guiding significance for individualized clinical treatment. This study aimed to evaluate the ability of a multiparametric magnetic resonance imaging (MRI)-based radiomics model to distinguish between the postoperative recurrence and psPD of a glioma early on and in a noninvasive manner. METHODS: A total of 52 patients with gliomas who attended the Hainan Provincial People's Hospital between 2000 and 2021 and met the inclusion criteria were selected for this study. 1137 and 1137 radiomic features were extracted from T1 enhanced and T2WI/FLAIR sequence images, respectively.After clearing some invalid information and LASSO screening, a total of 9 and 10 characteristic radiological features were extracted and randomly divided into the training set and the test set according to 7:3 ratio. Select-Kbest and minimum Absolute contraction and selection operator (LASSO) were used for feature selection. Support vector machine and logistic regression were used to form a multi-parameter model for training and prediction. The optimal sequence and classifier were selected according to the area under the curve (AUC) and accuracy. RESULTS: Radiomic models 1, 2 and 3 based on T1WI, T2FLAIR and T1WI + T2T2FLAIR sequences have better performance in the identification of postoperative recurrence and false progression of T1 glioma. The performance of model 2 is more stable, and the performance of support vector machine classifier is more stable. The multiparameter model based on CE-T1 + T2WI/FLAIR sequence showed the best performance (AUC:0.96, sensitivity: 0.87, specificity: 0.94, accuracy: 0.89,95% CI:0.93-1). CONCLUSION: The use of multiparametric MRI-based radiomics provides a noninvasive, stable, and accurate method for differentiating between the postoperative recurrence and psPD of a glioma, which allows for timely individualized clinical treatment.

10.
Chem Asian J ; : e202400143, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709124

RESUMO

The loss of function after prolonged periods of use is inevitable for all materials including plastics. Hence, self-healing capabilities are a key development to prolong the service lifetime of materials. One of such self-healing capabilities can be achieved by integrating dynamic bonds such as boronic ester linkages into polymeric materials, however the rate of self-healing in these materials is insufficient and current methods to accelerate it are limited. In this study, we report the rational design, synthesis and characterization of a fluorinated elastomer (FBE15) that utilizes enhanced interaction between polymer chains afforded by strong dipole-dipole interactions from -CF3, which showed a significant increase in binding energy to -7.71 Kcal/mol from -5.51 Kcal/mol, resulting in increased interaction between the boronic ester linkages and improving self-healing capabilities of boronic ester materials, drastically reducing the time required for stress relaxation by 900 %. The bulk elastomer is capable of ultrafast self-healing in a one-click fashion that can happen in mere seconds, which can then be stretched to 150 % of its original length. By utilising the dynamic cross-linking, FBE15 is also capable of both mechanical reprocessing into the same materials and chemical recycling into its starting materials, respectively, further allowing reconstruction of the elastomers that have comparable properties to the original ones at the end of its service lifespan.

11.
J Immunol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700419

RESUMO

The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.

12.
Clin Cosmet Investig Dermatol ; 17: 953-959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699407

RESUMO

Squamous cell carcinoma (SCC) in situ can occur on any skin or mucus surface and is more commonly found in elderly patients on areas of skin that have been sunburnt. Most previous case reports are from dermatologists, with few published reports from pathologists. In this study, three patients underwent pathological routine and auxiliary immunohistochemical (IHC) examination and were ultimately diagnosed with pagetoid SCC in situ - a different diagnosis from the initial clinical assessment. All three patients received a complete resection of the skin mass. After follow-up, as of June 2023, the patients had no tumour recurrence or metastasis. Pagetoid SCC in situ is a particular type of SCC in situ that has no specific features in clinical manifestations, gross diagnosis or histopathological sections. The final diagnosis depends on IHC staining. Pagetoid SCC in situ expresses EMA, CK5/6 and p63 but not CEA, CK8 or S-100, which are expressed in extramammary Paget's disease. Pagetoid SCC in situ is usually only locally invasive, and the main treatment is complete surgical resection. The prognosis is related to human papillomavirus infection, surgical margin closure, disease location, tumour thickness and other factors.

13.
Sci Rep ; 14(1): 10314, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705949

RESUMO

The Changjinghuang Railway Xinjiang Xizhi Bridge is a (90 + 180 + 90) m continuous beam arch bridge, and the arch rib steel pipe installation adopts "short bracket assembly and overall lifting method". In order to ensure the accuracy of closure, the stress and deformation of the arch rib and bracket must be strictly controlled. Midas Civil is used to establish the finite element model to simulate the overall lifting construction process of the arch rib. Based on the model, the stress and deformation of the arch rib and the supports are analyzed, and the determination method of the horizontal cable force under temperature variations is proposed. The results show that the stress and deformation of the arch rib and bracket meet the requirements. Considering the variation of temperature, the tension force of the horizontal cables is taken as 200 t. The construction plan proposed under the guidance of numerical calculation results has been proven by practical engineering to meet the requirement of closure accuracy, which can be used as a reference for similar projects.

14.
Diabetes Metab Syndr Obes ; 17: 1923-1939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711674

RESUMO

Aim: To evaluate the advantages and problems in the diagnosis and treatment of diabetic foot (DF) patients by analyzing the results of a 5-year follow-up of the organ system based (TOSF) treatment model. Methods: A retrospective study was conducted in 229 patients with diabetic foot. Chi-square test and rank-sum test were used to analyze the effects of patients' general condition, behavioral and nutritional status, degree of infection (inflammatory markers), comorbidity, diabetic foot grade/classification, and revascularization on readmission rate, amputation rate, all-cause mortality, incidence of other complications, and wound healing time. Logistic regression was used to analyze the risk factors affecting the prognosis of diabetic foot. Kaplan-Meier survival curve was used to analyze the differences in amputation rate and mortality rate at each time point. Results: This study showed that nutritional status, degree of infection, and revascularization influenced readmission rates. General condition, behavior and nutritional status, degree of infection, Wagner grade and revascularization affect the amputation rate. General conditions, behavioral and nutritional status, degree of infection, comorbidities, classification and revascularization affect the mortality of patients. Age and white blood cell(WBC) count affected the incidence of other complications. Influence of infection degree and Wagner grade and revascularization in patients with wound healing time. Revascularization was an independent protective factor for readmission, amputation, and mortality.Elevated serum inflammatory markers are an independent risk factor for amputation. Hypoproteinemia is an independent risk factor for mortality. Conclusion: In the "TOSF" diagnosis and treatment pattern, diabetic foot patients have a good prognosis. Special attention should be paid to the screening and revascularization of lower extremity vascular disease in patients with diabetic foot.

15.
IEEE Trans Med Imaging ; PP2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717880

RESUMO

The integration of Computer-Aided Diagnosis (CAD) with Large Language Models (LLMs) presents a promising frontier in clinical applications, notably in automating diagnostic processes akin to those performed by radiologists and providing consultations similar to a virtual family doctor. Despite the promising potential of this integration, current works face at least two limitations: (1) From the perspective of a radiologist, existing studies typically have a restricted scope of applicable imaging domains, failing to meet the diagnostic needs of different patients. Also, the insufficient diagnostic capability of LLMs further undermine the quality and reliability of the generated medical reports. (2) Current LLMs lack the requisite depth in medical expertise, rendering them less effective as virtual family doctors due to the potential unreliability of the advice provided during patient consultations. To address these limitations, we introduce ChatCAD+, to be universal and reliable. Specifically, it is featured by two main modules: (1) Reliable Report Generation and (2) Reliable Interaction. The Reliable Report Generation module is capable of interpreting medical images from diverse domains and generate high-quality medical reports via our proposed hierarchical in-context learning. Concurrently, the interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice. Together, these designed modules synergize to closely align with the expertise of human medical professionals, offering enhanced consistency and reliability for interpretation and advice. The source code is available at GitHub.

16.
Nanoscale ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712853

RESUMO

The widespread applicability of perovskite nanocrystals (PeNCs) is impeded by their intrinsic instability. A promising solution is utilizing robust chalcogenides as a protective shell to shield the sensitive luminescent cores from the external environment. However, the inferior structural stability and surface lability of PeNCs usually lead to perovskite phase transition during shell growth. Herein, we introduced smaller Zn ions to partially replace Pb ions in perovskites, which reduces the Pb-X bond length and enhances the Pb-X bond energy for inner lattice stabilization. Simultaneously, extra oleylammonium bromide (OAmBr) was added to protect the labile surface of PeNCs by compensating for the detachment of ligands and the loss of surface Br ions. As a result, the dual strategies enable the epitaxial growth of a ZnS shell and significantly enhance the chemical stability of CsZnPbBr3/ZnS core/shell PeNCs. After three thermal cycles ranging from 300 to 450 K, the core/shell PeNCs retained 70% of their initial photoluminescence (PL) intensity. In stark contrast, the pristine CsPbBr3 PeNCs exhibit complete PL quenching after just the first temperature cycle. For practical applications, the green core/shell PeNCs were integrated with commercially available red-emitting phosphors on a blue-emitting InGaN chip to fabricate a white light-emitting diode (WLED), which demonstrates a high luminous efficacy (LE) of 61.3 lm W-1 and nearly constant Commission Internationale de l'Eclairage (CIE) coordinates under varying operating currents.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38761998

RESUMO

BACKGROUND: Previous study implied that local M2 polarization of macrophage promoted mucosal edema and exacerbates Th2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We thought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: RT-qPCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5 knockout mice were used to establish nasal polyp model with Th2 inflammation and investigate the effects of SIRT5 in macrophages on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophages markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5 deficiency mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages through promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting the alternative polarization of macrophage and thus provides a potential target for CRSwNP interventions.

18.
Commun Biol ; 7(1): 586, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755285

RESUMO

Bats serve as reservoirs for numerous zoonotic viruses, yet they typically remain asymptomatic owing to their unique immune system. Of particular significance is the MHC-I in bats, which plays crucial role in anti-viral response and exhibits polymorphic amino acid (AA) insertions. This study demonstrated that both 5AA and 3AA insertions enhance the thermal stability of the bat MHC-I complex and enrich the diversity of bound peptides in terms of quantity and length distribution, by stabilizing the 310 helix, a region prone to conformational changes during peptide loading. However, the mismatched insertion could diminish the stability of bat pMHC-I. We proposed that a suitable insertion may help bat MHC-I adapt to high body temperatures during flight while enhancing antiviral responses. Moreover, this site-specific insertions may represent a strategy of evolutionary adaptation of MHC-I molecules to fluctuations in body temperature, as similar insertions have been found in other lower vertebrates.


Assuntos
Quirópteros , Antígenos de Histocompatibilidade Classe I , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Estabilidade Proteica , Peptídeos/química , Peptídeos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Apresentação de Antígeno , Mutagênese Insercional
19.
J Colloid Interface Sci ; 669: 912-926, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38754144

RESUMO

Polyelectrolyte-encapsulated nanocontainers can effectively respond to changes of pH and thus control the on-demand release of corrosion inhibitors. A pH-responsive release system (Phen-Tpp@MTNs-PDDA) was developed based on the cationic polyelectrolyte poly dimethyl diallyl ammonium chloride (PDDA) encapsulated mesoporous TiO2 nanocontainers (MTNs) loaded with 1,10-phenanthroline (Phen) and tripolyphosphate ions (Tpp) corrosion inhibitors. The epoxy coating (EP) embedded with Phen-Tpp@MTNs-PDDA (Phen-Tpp@MTNs-PDDA/EP) demonstrates superior self-healing properties and confers long-term protection on the metal substrate through the cooperative effect of Phen and Tpp. Simultaneously, this hybrid coating is endowed with corrosion sensing capability based on the color development originating from the interaction of Phen and carbon steel. This self-healing and corrosion-sensing multifunctional coating provides an effective strategy for the corrosion protection of metals.

20.
Nanoscale ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742531

RESUMO

ZnSeTe quantum dots (QDs) have been employed as promising emitters for blue QD-based light-emitting diodes (QLEDs) due to their unique optoelectronic properties and environmental friendliness. However, such QLEDs usually suffer from serious efficiency roll-off primarily stemming from exciton loss at the interface of the QD layer and the ZnMgO (ZMO) electron transport layer (ETL), which remarkably hinders their application in flat-panel displays. Herein, we propose an in situ hybridization strategy that involves the pre-introduction of amino alcohols into the reaction solution. This strategy effectively suppresses the nucleophilic condensation process by facilitating the coordination of ammonium and hydroxyl groups with metal cations (M2+, i.e. Zn2+ and Mg2+). It slows down the growth rate of ZMO nanoparticles (NPs) while simultaneously facilitating M-O coordination, resulting in the synthesis of small-sized and low-defect ZMO NPs. Notably, this in situ hybridization approach not only alleviates emission quenching at the QDs/ETL interface but also elevates the energy level of the ETL for enhancing carrier injection. We further investigated the impact of amino alcohols with varying carbon-chain lengths on the performance of ZMO NPs and the corresponding LED devices. The optimal blue ZnSeTe QLED demonstrates an impressive EQE of 8.6% with only an ∼11% drop when the current density is increased to 200 mA cm-2, and the device operating lifetime extends to over 1300 h. Conversely, the device utilizing traditionally post-treated ZMO NPs as the ETL exhibits 45% efficiency roll-off and device lifetime of merely 190 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...