RESUMO
The unsaturated aza-heterocycles such as tetrahydropyridines pose significant applications in both drug discovery and development. However, the methods to construct polyfunctionalized tetrahydropyridines are still limited. Herein, we report a modular synthesis of tetrahydropyridines via copper catalyzed multicomponent radical cascade reaction. The reaction features mild conditions and broad substrate scope. In addition, the reaction could scale up to gram scale with similar yield. A variety of 1,2,5,6-tetrahydropyridines with C3 and C5 substituents could be assembled from simple starting materials. More importantly, the products could serve as versatile intermediate to access various functionalized aza-heterocycles which further demonstrates its utility.
RESUMO
With the development of technology, low-temperature plasma plays an increasingly important role in industrial applications. The industrial application of low-temperature plasma has the following requirements for plasma, high electron energy, low macroscopic temperature, and uniformity. Low-temperature plasma driven by nanosecond pulses reflects more significant advantages in these aspects compared to direct current plasma and alternating current plasma. In this paper, a simple topology is proposed, which is based on the pseudospark switch and the diode opening switch. A pulse generator is developed, which can eventually output pulses with an amplitude of 106 kV, a rise time of 15.5 ns, a pulse width of 46 ns, and a maximum repetition rate of 1 kHz on a 260 Ω resistive load. The pulse generator can successfully drive needle-plate discharge plasma in ambient air. It has excellent parameters, stability, compactness, and a long lifetime. The proposed topology may be helpful for nanosecond pulse generators with amplitude ranging from tens to hundreds of kilovolts, which could be widely used in industry.
RESUMO
The present study investigated the chemical constituents from the leaves of Craibiodendron yunnanense. The compounds were isolated and purified from the leaves of C. yunnanense by a combination of various chromatographic techniques including column chromatography over polyamide, silica gel, Sephadex LH-20, and reversed-phase HPLC. Their structures were identified by extensive spectroscopic analyses including MS and NMR data. As a result, 10 compounds, including melionoside F(1), meliosmaionol D(2), naringenin(3), quercetin-3-O-α-L-arabinopyranoside(4), epicatechin(5), quercetin-3'-glucoside(6), corbulain Ib(7), loliolide(8), asiatic acid(9), and ursolic acid(10), were isolated. Compounds 1 and 2 were two new compounds, and compound 7 was isolated from this genus for the first time. All compounds showed no significant cytotoxic activity by MTT assay.
Assuntos
Catequina , Ericaceae , Quercetina , Folhas de Planta , Cromatografia Líquida de Alta PressãoRESUMO
A chemical investigation on the aqueous extract of Corydalis yanhusuo tubers led to the isolation and structural elucidation of three pairs of trace enantiomeric hetero-dimeric alkaloids, (+)/(-)-yanhusamides A-C (1-3), featuring an unprecedented 3,8-diazatricylco[5.2.2.02,6]undecane-8,10-diene bridged system. Their structures were exhaustively characterized by X-ray diffraction, comprehensive spectroscopic data analysis, and computational methods. Guided by the hypothetical biosynthetic pathway for 1-3, a gram-scale biomimetic synthesis of (±)-1 was achieved in 3 steps using photoenolization/Diels-Alder (PEDA) [4+2] cycloaddition. Compounds 1â3 exhibited potent inhibition of NO production induced by LPS in RAW264.7 macrophages. The in vivo assay showed that oral administration of 30 mg/kg of (±)-1 attenuated the severity of rat adjuvant-induced arthritis (AIA). Additionally, (±)-1 induced a dose-dependent antinociceptive effect in the acetic acid-induced mice writhing assay.
RESUMO
Although previous studies have suggested that hemoglobin is related to the health status of people living with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) (PLWHA), the role of anemia in mortality remains unclear. This study aimed to comprehensively quantify the effect of anemia on the mortality risk of PLWHA. In this retrospective cohort study, we thoroughly estimated the effect of anemia on PLWHA mortality, using data collected from January 2005 to June 2022 in the Huzhou area, in 450 subjects extracted from the database of the China Disease Prevention and Control Information System and matched them using a propensity score matching approach to balance potential confounding bias. The potential exposure-response relationship between anemia, hemoglobin concentration, and the mortality of PLWHA was also carefully estimated. A series of subgroup analyses, including interaction analysis, was further conducted to validate the robustness of the effect of anemia on PLWHA death risk. Anemia was significantly associated with an elevated death risk in PLWHA, with an increase of 74% (adjusted hazard ratio [AHR]: 1.74; 95% confidence interval [CI]: 1.03-2.93; p = 0.038) in those with anemia after adjusting for potential confounders. PLWHA with moderate or severe anemia had a higher risk of death, with an 86% increase (AHR = 1.86; 95% CI: 1.01-3.42; p = 0.045). Meanwhile, the AHR tended to increase by 85% on average (AHR = 1.85, 95% CI: 1.37-2.50; p < 0.001) with a per standard deviation (SD) decrease in plasma hemoglobin. Consistent relationships between plasma hemoglobin and the risk of death were further observed in the results from multiple quantile regression models, restricted cubic spline regression models, and a series of subgroup analyses. Anemia is an independent risk factor for HIV/AIDS-related mortality. Our findings may provide new insights into the relevance of PLWHA administration to public health policy, which demonstrate that this low-cost and routinely measured marker (hemoglobin) can be a marker of poor prognosis even before the start of HAART.
RESUMO
Apolipoprotein E (ApoE), a protein closely related to various metabolic diseases, is recently considered to play an essential role in bone metabolism. However, the effect and mechanism of ApoE on implant osseointegration have not been clarified. This study aims to investigate the influence of additional ApoE supplementation in regulating the osteogenesis-lipogenesis balance on bone marrow mesenchymal stem cells (BMMSCs) cultured on titanium surface, and the effect of ApoE on the osseointegration of titanium implants. In vivo, the bone volume/total volume (BV/TV) and the bone-implant contact (BIC) significantly elevated in the exogenous supplement of ApoE group, compared with the Normal group. Meanwhile, the adipocyte area proportion around the implant dramatically decreased after 4-week healing. In vitro, the additional ApoE substantially drove the osteogenic differentiation of BMMSCs cultured on the titanium surface and inhibit their lipogenic differentiation as well as lipid droplet accumulation. These results suggest that ApoE, by mediating the differentiation of stem cells on the surface of titanium with this macromolecular protein, is deeply involved in facilitating titanium implant osseointegration, which reveals the potential mechanism and proposes a promising solution for further improving the osseointegration of titanium implants.
RESUMO
Pyroptosis, systemic inflammation, and mitochondrial apoptosis are the three primary contributors to sepsis's multiple organ failure, the ultimate cause of high clinical mortality. Currently, the drugs under development only target a single pathogenesis, which is obviously insufficient. In this study, an acid-responsive hollow mesoporous polydopamine (HMPDA) nanocarrier that is highly capable of carrying both the hydrophilic drug NAD+ and the hydrophobic drug BAPTA-AM, with its outer layer being sealed by the inflammatory targeting peptide PEG-LSA, is developed. Once targeted to the region of inflammation, HMPDA begins depolymerization, releasing the drugs NAD+ and BAPTA-AM. Depletion of polydopamine on excessive reactive oxygen species production, promotion of ATP production and anti-inflammation by NAD+ replenishment, and chelation of BAPTA (generated by BA-AM hydrolysis) on overloaded Ca2+ can comprehensively block the three stages of sepsis, i.e., precisely inhibit the activation of pyroptosis pathway (NF-κB-NLRP3-ASC-Casp-1), inflammation pathway (IL-1ß, IL-6, and TNF-α), and mitochondrial apoptosis pathway (Bcl-2/Bax-Cyt-C-Casp-9-Casp-3), thereby restoring intracellular homeostasis, saving the cells in a state of "critical survival," further reducing LPS-induced systemic inflammation, finally restoring the organ functions. In conclusion, the synthesis of this agent provides a simple and effective synergistic drug delivery nanosystem, which demonstrates significant therapeutic potential in a model of LPS-induced sepsis.
RESUMO
OBJECTIVES: To compare the efficacy and safety of percutaneous microwave ablation (PMWA) and transcervical resection of myoma (TCRM) for submucosal fibroids. METHODS: From January 2019 to January 2021, we conducted a randomized controlled study involving patients with symptomatic uterine submucosal fibroids. Questionnaires were also used to measure the uterine fibroid symptom (UFS) scores and quality of life (QoL) scores before and after treatment at 3, 6, and 12 months. Outcomes, adverse events, hemoglobin recovery, and submucosal fibroid volume of both groups were also compared. Operation time, amount of bleeding, hospital stay time, and occurrence of complications were compared in groups with fibroids of different lengths. RESULTS: Follow-up after surgery showed that UFS scores at 3, 6, and 12 months were significantly lower in each group, while QoL scores increased significantly. For fibroids less than 3 cm, surgical time was 34.2 ± 9.9 min, incidence of perioperative complications was 4.2%, and both decreased significantly, compared to the surgical time of the PMWA group (40.0 ± 8.1 min) and incidence of perioperative complications (24%; p < .05 for both). For uterine submucosal fibroids >5 cm, the operation time in the PMWA group was 92.7 ± 16.0 min, intraoperative bleeding volume was 22.7 ± 6.4 mL, and hospital stay was 2.7 ± 1.1 days, which were significantly less than the procedural time (107 ± 11.9 min), intraoperative bleeding loss (45.9 ± 12.8 mL), and length of hospital stay (5.0 ± 1.1 days) in the TCRM group. The differences were statistically significant (p < .05). CONCLUSIONS: PMWA and TCRM were both effective treatments for uterine submucosal fibroids. For fibroids shorter than 3 cm in length, especially pedicled submucosal fibroids, TCRM has absolute advantages; however, for uterine submucosal fibroids >5 cm, PMWA avoids perioperative complications, such as uterine perforation, water poisoning syndrome, and the need for repeat surgery, and is considered the preferred mode of treatment. Therefore, personalized treatment should be used for different patients with uterine submucosal fibroids.
RESUMO
BACKGROUND: Hemorrhagic transformation (HT) is a common complication of acute ischemic stroke (AIS), and may develop into parenchyma hemorrhage (PH). We aimed to investigate the association between serum homocysteine levels and HT as well as PH in all AIS patients, and in those with and without thrombolysis by subgroup analysis. METHODS: AIS patients who were admitted within 24 h after onset were enrolled and categorized into the higher homocysteine level group (≥ 15.5 µmol/L) and the lower homocysteine level group (< 15.5 µmol/L). HT was determined by a second round of brain imaging within 7 days during hospitalization, and PH was defined as hematoma in the ischemic parenchyma. Multivariate logistic regression was used to investigate the associations between serum homocysteine levels and HT and PH, respectively. RESULTS: Of the 427 included patients (mean age 67.35 years, 60.0% males), 56 (13.11%) developed HT and 28 (6.56%) had PH. Serum homocysteine levels were significantly associated with HT (adjusted OR 1.029, 95%CI 1.003-1.055) and PH (adjusted OR 1.041, 95%CI 1.013-1.070). The higher homocysteine group was more likely to have HT (adjusted OR 1.902, 95% CI 1.022-3.539) and PH (adjusted OR 3.073, 95% CI 1.327-7.120) than the lower homocysteine group. Subgroup analysis of patients without thrombolysis also showed the significant differences in HT (adjusted OR 2.064, 95% CI 1.043-4.082) and PH (adjusted OR 2.926, 95% CI 1.196-7.156) between the two groups. CONCLUSION: Higher serum homocysteine levels are associated with an increased risk of HT and PH in AIS patients, especially in those without thrombolysis. Monitoring the serum homocysteine may be conducive to determining individuals at a high risk of HT.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Masculino , Humanos , Idoso , Feminino , Acidente Vascular Cerebral/complicações , Isquemia Encefálica/complicações , AVC Isquêmico/complicações , Fatores de Risco , Hemorragia Cerebral/complicaçõesRESUMO
Apple scar skin viroid (ASSVd) can infect apple trees and cause scar skin symptoms. However, the associated physiological mechanisms are unclear in young saplings. In this study, ASSVd-infected and control 'Odysso' and 'Tonami' apple saplings were examined to clarify the effects of ASSVd on apple tree growth and physiological characteristics as well as the leaf metabolome. The results indicated that leaf ASSVd contents increased significantly after grafting and remained high in the second year. Leaf size, tree height, stem diameter, branch length, and leaf photosynthetic efficiency decreased significantly in viroid-infected saplings. In response to the ASSVd infection, the chlorophyll a and b contents decreased significantly in 'Odysso', but were unchanged in 'Tonami'. Moreover, the N, P, K, Fe, Mn, and Ca contents decreased significantly in the leaves of viroid-infected 'Odysso' or 'Tonami'. Similarly, the CAT and POD contents decreased significantly in the viroid-infected saplings, but the SOD content increased in the viroid-infected 'Tonami' saplings. A total of 15 and 40 differentially abundant metabolites were respectively identified in the metabolome analyses of 'Odysso' and 'Tonami' leaves. Specifically, in the viroid-infected 'Odysso' and 'Tonami' samples, the L-2-aminobutyric acid, 6â³-O-malonyldaidzin, and D-xylose contents increased, while the coumarin content decreased. These metabolites are related to the biosynthesis of isoflavonoids and phenylpropanoids as well as the metabolism of carbohydrates and amino acids. These results imply that ASSVd affects apple sapling growth by affecting physiological characteristics and metabolism of apple leaves. The study data may be useful for future investigations on the physiological mechanisms underlying apple tree responses to ASSVd.
RESUMO
Staphylococcus aureus (SA) is a relatively uncommon cause of urinary tract infections (UTIs) in the general population. Although rare, S. aureus-induced UTIs are prone to potentially life-threatening invasive infections such as bacteremia. To investigate the molecular epidemiology, phenotypic characteristics, and pathophysiology of S. aureus-induced UTIs, we analyzed non-repetitive 4,405 S. aureus isolates collected from various clinical sources from 2008 to 2020 from a general hospital in Shanghai, China. Among these, 193 isolates (4.38%) were cultivated from the midstream urine specimens. Epidemiological analysis showed UTI-derived ST1 (UTI-ST1) and UTI-ST5 are the primary sequence types of UTI-SA. Furthermore, we randomly selected 10 isolates from each of the UTI-ST1, non-UTI-ST1 (nUTI-ST1), and UTI-ST5 groups to characterize their in vitro and in vivo phenotypes. The in vitro phenotypic assays revealed that UTI-ST1 exhibits an obvious decline in hemolysis of human red blood cells and increased biofilm and adhesion in the urea-supplemented medium, compared to the medium without urea, while UTI-ST5 and nUTI-ST1 did not show significant differences between the biofilm-forming and adhesion abilities. In addition, the UTI-ST1 displayed intense urease activities by highly expressing urease genes, indicating the potential role of urease in UTI-ST1 survival and persistence. Furthermore, in vitro virulence assays using the UTI-ST1 ureC mutant showed no significant difference in the hemolytic and biofilm-forming phenotypes in the presence or absence of urea in the tryptic soy broth (TSB) medium. The in vivo UTI model also showed that the CFU of the UTI-ST1 ureC mutant rapidly reduced during UTI pathogenesis 72 h post-infection, while UTI-ST1 and UTI-ST5 persisted in the urine of the infected mice. Furthermore, the phenotypes and the urease expression of UTI-ST1 were found to be potentially regulated by the Agr system with the change in environmental pH. In summary, our results provide important insights into the role of urease in S. aureus-induced UTI pathogenesis in promoting bacterial persistence in the nutrient-limiting urinary microenvironment.
RESUMO
The direct monofluoroalkenylation of C(sp3)-H bonds is of great importance and quite challenging. Current methods have been restricted to the monofluoroalkenylation of activated C(sp3)-H bonds. Here, we reported the photocatalyzed C(sp3)-H monofluoroalkenylation of inactivated C(sp3)-H bonds with gem-difluoroalkenes via 1,5-hydrogen atom transfer. This process shows good functional group tolerance, such as halides (F, Cl), nitrile, sulfone, ester, and pyridine, and good γ-selectivity. Moreover, this method succeeds in the photocatalyzed gem-difluoroallylation of inactivated C(sp3)-H with α-trifluoromethyl alkenes.
RESUMO
Atherosclerosis is an early pathological basis of numerous cardiovascular events that result in death or disability. Recent studies have described PCSK9 as a novel target for the treatment of atherosclerosis; PCSK9 is capable of degrading LDLR on the surface of hepatocytes through the regulation of lipid metabolism, and it can function as a novel inflammatory modulator in atherosclerosis. Inflammasomes are important intracellular multiprotein complexes that promote the inflammatory response in atherosclerosis. Among inflammasomes, the NLRP3 inflammasome is particularly notable because of its important role in the development of atherosclerotic disease. After activation, NLRP3 forms a complex with ASC and pro-caspase-1, converting pro-caspase-1 into activated caspase-1, which may trigger the release of IL-1ß and IL-18 and contribute to the inflammatory response. Several recent studies have indicated that there may be interactions between PCSK9 and the NLRP3 inflammasome, which may contribute to the inflammatory response that drives atherosclerosis development and progression. On the one hand, the NLRP3 inflammasome plays an important role via IL-1ß in regulating PCSK9 secretion. On the other hand, PCSK9 regulates caspase-1-dependent pyroptosis by initiating mtDNA damage and activating NLRP3 inflammasome signaling. This paper reviews the mechanisms underlying PCSK9 and NLRP3 inflammasome activation in the context of atherosclerosis. Furthermore, we describe the current understanding of the specific molecular mechanism underlying the interactions between PCSK9 and NLRP3 inflammasome signaling as well as the drug repositioning events that influence vascular cells and exert beneficial antiatherosclerotic effects. This review may provide a new therapeutic direction for the effective prevention and treatment of atherosclerosis in the clinic.
Assuntos
Aterosclerose , Inflamassomos , Humanos , Aterosclerose/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pró-Proteína Convertase 9RESUMO
In this work, a novel composite material (HPU-24@Ru) has been prepared by combining a blue-emission Cd-based metal-organic framework (MOF, [Cd2(TCPE)(DMF)(H2O)3]n, HPU-24) with a red-emission tris (2,2'-bipyridine) dichlororuthenium(II) hexahydrate ([Ru(bpy)3]2+) molecule for ratiometric fluorescence sensing of Al3+ ions in aqueous medium and high-level dynamic anticounterfeiting application. The luminescence measurement results indicated that the fluorescence intensity of HPU-24 at 446 nm showed a red shift in the presence of Al3+ ions, and the new peak appeared at 480 nm and continued to increase with an increase in Al3+ ion concentration. Meanwhile, the fluorescence intensity of [Ru(bpy)3]2+ almost showed no change. The detection limit was calculated as 11.63 µM, which was better than that for the MOF-based Al3+ ions in some reported examples in aqueous media and achieved through strong electrostatic interactions between HPU-24@Ru and Al3+ ions. Moreover, owing to the particularity of the tetrastyryl structure in HPU-24, HPU-24@Ru showed intriguing temperature-dependent emission behavior. This unique structure provides the composite material HPU-24@Ru with attributes for high-level information encryption that make it difficult for counterfeiters to identify all of the right decryption measures.
RESUMO
Astrocytes are increasingly understood to be important regulators of central nervous system (CNS) function in health and disease; yet, we have little quantitative understanding of their complex architecture. While broad categories of astrocytic structures are known, the discrete building blocks that compose them, along with their geometry and organizing principles, are poorly understood. Quantitative investigation of astrocytic complexity is impeded by the absence of high-resolution datasets and robust computational approaches to analyze these intricate cells. To address this, we produced four ultra-high-resolution datasets of mouse cerebral cortex using serial electron microscopy and developed astrocyte-tailored computer vision methods for accurate structural analysis. We unearthed specific anatomical building blocks, structural motifs, connectivity hubs, and hierarchical organizations of astrocytes. Furthermore, we found that astrocytes interact with discrete clusters of synapses and that astrocytic mitochondria are distributed to lie closer to larger clusters of synapses. Our findings provide a geometrically principled, quantitative understanding of astrocytic nanoarchitecture and point to an unexpected level of complexity in how astrocytes interact with CNS microanatomy.
Assuntos
Astrócitos , Sinapses , Animais , Camundongos , Astrócitos/fisiologia , Sinapses/fisiologia , Córtex CerebralRESUMO
With the application of positive psychology in health management, many studies have confirmed the close relationship between post-traumatic growth, psychological capital and uncertainty in illness. However, there is still a lack of attention to the positive psychology of patients with Parkinson's disease, and previous studies have not clarify the specific relationship. Therefore, the present study sought to explore the multiple mediating roles of psychological capital between post-traumatic growth and uncertainty in illness among patients with Parkinson's disease. We conducted a cross-sectional survey, a total of 268 patients with Parkinson's disease were investigated by the Post-Traumatic Growth Inventory, the Positive Psychological Capital Questionnaire and the Mishel Uncertainty in Illness Scale - Adults from November 2021 to June 2022 in the Parkinson's specialist outpatient department of three 3a-grade hospitals in Tianjin, China. The results showed that the score of post-traumatic growth was (51.78±17.872), the score of uncertainty in illness was (68.08±17.555), and the score of self-efficacy, resilience, hope, and optimism dimensions of psychological capital were (28.93±10.511), (28.79±11.553), (27.57±8.558) and (25.35±9.768). Post-traumatic growth was negatively correlated with uncertainty in illness and positively correlated with all four dimensions of psychological capital (p < 0.01), and uncertainty in illness was negatively correlated with all four dimensions of psychological capital (p < 0.01). Bootstrap test showed that the direct effect of post-traumatic growth on uncertainty in illness of patients with Parkinson's disease was not significant; the total indirect effect of psychological capital between post-traumatic growth and uncertainty in illness was significant. The mediating effects of resilience and hope were significant, accounting for 53.07% and 19.41% of the total indirect effects, respectively. Based on the research results, psychological capital played a completely mediating role between post-traumatic growth and uncertainty in illness of patients with Parkinson's disease. Post-traumatic growth affected uncertainty in illness through two dimensions: resilience and hope. Healthcare professionals should pay attention to the level of psychological capital of patients with Parkinson's disease and implement targeted positive psychological interventions focusing on the two dimensions of resilience and hope, to enhance post-traumatic growth and reduce the level of uncertainty in illness.
RESUMO
BACKGROUND: Previous studies have evaluated the learning curve to achieve competency but have not identified thresholds for mastery. Robotic-assisted coronary artery bypass grafting (CABG) is a minimally-invasive alternative to sternotomy CABG. The purpose of this study was to evaluate the short- and long-term outcomes of this procedure and to estimate the threshold for achieving mastery. METHODS: From 2009-2020, 1,000 robotic-assisted CABG procedures were performed at a single institution. Robotic left internal mammary artery (LIMA) harvest, followed by off-pump, LIMA-left anterior descending grafting via a 4cm thoracotomy was performed. Short-term outcomes were obtained from the STS database and long-term follow-up was obtained by telephone questionnaires from dedicated research nurses for all patients >1 year from surgery. RESULTS: The mean age was 64±11 years, STS predicted risk of mortality was 1.1±1.5%, and 76% (758) of patients were male. Thirty-day mortality occurred in 6 patients (0.6%, O/E 0.53), 5 (0.5%) experienced a postoperative stroke, and postoperative LIMA patency was 97.2% (491/505). Mean procedure time decreased from 195 minutes to 176 minutes, and conversion to sternotomy decreased from 4.4% (22/500) to 1.6% (8/500) after 500 cases. Short-term outcomes suggest expertise was reached between 250-500 cases. Long-term follow up was completed in 97% (873/896) of patients with a median follow-up of 3.9 years, Q1-Q3:(1.8, 5.8) and the overall survival was 89% (777). CONCLUSIONS: Robotic-assisted CABG can be performed safely with excellent results even during a surgeon's early experience. However, the learning curve to achieve mastery is longer than required to achieve competency with a threshold of approximately 250-500 cases.
RESUMO
The glucose regulated protein (GRP78) is an important chaperone for various environmental and physiological stimulations. Despite the importance of GRP78 in cell survival and tumor progression, the information regarding GRP78 in silkworm Bombyx mori L. is poorly explored. We previously identified that GRP78 expression was significantly upregulated in the silkworm Nd mutation proteome database. Herein, we characterized the GRP78 protein from silkworm B. mori (hereafter, BmGRP78). The identified BmGRP78 protein encoded a 658 amino acid residues protein with a predicted molecular weight of approximately 73 kDa and comprised of two structural domains, a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). BmGRP78 was ubiquitously expressed in all examined tissues and developmental stages by quantitative RT-PCR and Western blotting analysis. The purified recombinant BmGRP78 (rBmGRP78) exhibited ATPase activity and could inhibit the aggregating thermolabile model substrates. Heat-induction or Pb/Hg-exposure strongly stimulated the upregulation expression at the translation levels of BmGRP78 in BmN cells, whereas no significant change resulting from BmNPV infection was found. Additionally, heat, Pb, Hg, and BmNPV exposure resulted in the translocation of BmGRP78 into the nucleus. These results lay a foundation for the future identification of the molecular mechanisms related to GRP78 in silkworms.
Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/genética , Nucleopoliedrovírus/genética , Chaperona BiP do Retículo Endoplasmático , Chumbo/metabolismo , Glucose/metabolismo , Proteínas de Insetos/genéticaRESUMO
Background: Hsa_circ_0072309 has been identified as a tumor suppressor in several carcinomas. However, its precise role in gastric cancer (GC) remains largely unknown. This study was aimed to explore the precise role of Hsa_circ_0072309 in GC. Methods: The transcriptional and clinical data of stomach adenocarcinoma were downloaded using the University of California SantaCruz (UCSC) Xena browser. The circular RNA (circRNA) datasets were obtained from the Gene Expression Omnibus (GEO) database. The expression profile and survival analysis of differentially expressed micro RNAs (DEMIs) and differentially expressed messenger RNAs (DEMs) were performed. Correlations between the expression and immune infiltration of the DEMS were studied. Additionally, the expression of hsa_circ_0072309 in GC tissues and cell lines were validated, and the relationship between its expression and clinical features was investigated. Gain- and loss-of function experiments and molecular interaction experiments were also conducted. Results: Overall, 7 differentially expressed circRNAs, 13 DEMIs, and 17 DEMs were screened. Two DEMIs (hsa_miR-34a-3p and hsa_miR-326) and five DEMs (C7, MARCKSL1, UBE2T, OLR1, and HOXC11) showed significant differences in the high- and low-risk groups. The most significantly enriched Gene Ontology terms were the circadian regulation of gene expression and protein binding. The most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were the PI3K-Akt and Ras signal pathways. Additionally, six genes were significantly correlated with immune infiltration. The real-time quantitative PCR (RT-qPCR) results revealed a significant downregulation of hsa_circ_0072309 in GC tissues related to tumor size, vascular invasion, and lymph node metastasis. A hsa_circ_0072309 overexpression suppressed whereas a hsa_circ_0072309 knockdown promoted GC cells proliferation and migration in vitro; in addition, hsa_circ_0072309 could directly bind to has-miR-34a-3p and has-miR-330-5p. Conclusions: Hsa_circ_0072309 is a potential diagnostic biomarker for GC, and complement component 7 may be a tumor suppressor. These may potentially predict the prognosis of patients with GC and may become new therapeutic targets.
RESUMO
BACKGROUND: Kidney cancer undergoes a dramatic metabolic shift and has demonstrated responsiveness to immunotherapeutic intervention. However, metabolic classification and the associations between metabolic alterations and immune infiltration in Renal cell carcinoma still remain elucidative. METHODS: Unsupervised consensus clustering was conducted on the TCGA cohorts for metabolic classification. GESA, mRNAsi, prognosis, clinical features, mutation load, immune infiltration and differentially expressed gene differences among different clusters were compared. The prognosis model and nomograms were constructed based on metabolic gene signatures and verified using external ICGC datasets. Immunohistochemical results from Human Protein Atlas database and Tongji hospital were used to validate gene expression levels in normal tissues and tumor samples. CCK8, apoptosis analysis, qPCR, subcutaneously implanted murine models and flowcytometry analysis were applied to investigate the roles of ACAA2 in tumor progression and anti-tumor immunity. RESULTS: Renal cell carcinoma was classified into 3 metabolic subclusters and the subcluster with low metabolic profiles displayed the poorest prognosis, highest invasiveness and AJCC grade, enhanced immune infiltration but suppressive immunophenotypes. ACAA2, ACAT1, ASRGL1, AKR1B10, ABCC2, ANGPTL4 were identified to construct the 6 gene-signature prognosis model and verified both internally and externally with ICGC cohorts. ACAA2 was demonstrated as a tumor suppressor and was associated with higher immune infiltration and elevated PD-1 expression of CD8+ T cells. CONCLUSIONS: Our research proposed a new metabolic classification method for RCC and revealed intrinsic associations between metabolic phenotypes and immune profiles. The identified gene signatures might serve as key factors bridging tumor metabolism and tumor immunity and warrant further in-depth investigations.