Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.877
Filtrar
1.
Front Immunol ; 15: 1285813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426091

RESUMO

Background: Vulnerable plaque was associated with recurrent cardiovascular events. This study was designed to explore predictive biomarkers of vulnerable plaque in patients with coronary artery disease. Methods: To reveal the phenotype-associated cell type in the development of vulnerable plaque and to identify hub gene for pathological process, we combined single-cell RNA and bulk RNA sequencing datasets of human atherosclerotic plaques using Single-Cell Identification of Subpopulations with Bulk Sample Phenotype Correlation (Scissor) and Weighted gene co-expression network analysis (WGCNA). We also validated our results in an independent cohort of patients by using intravascular ultrasound during coronary angiography. Results: Macrophages were found to be strongly correlated with plaque vulnerability while vascular smooth muscle cell (VSMC), fibrochondrocyte (FC) and intermediate cell state (ICS) clusters were negatively associated with unstable plaque. Weighted gene co-expression network analysis showed that Secreted Phosphoprotein 1 (SPP1) in the turquoise module was highly correlated with both the gene module and the clinical traits. In a total of 593 patients, serum levels of SPP1 were significantly higher in patients with vulnerable plaques than those with stable plaque (113.21 [73.65 - 147.70] ng/ml versus 71.08 [20.64 - 135.68] ng/ml; P < 0.001). Adjusted multivariate regression analysis revealed that serum SPP1 was an independent determinant of the presence of vulnerable plaque. Receiver operating characteristic curve analysis indicated that the area under the curve was 0.737 (95% CI 0.697 - 0.773; P < 0.001) for adding serum SPP1 in predicting of vulnerable plaques. Conclusion: Elevated serum SPP1 levels confer an increased risk for plaque vulnerability in patients with coronary artery disease.

2.
Front Immunol ; 15: 1334882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426112

RESUMO

Immunosuppression increases the risk of nosocomial infection in patients with chronic critical illness. This exploratory study aimed to determine the immunometabolic signature associated with nosocomial infection during chronic critical illness. We prospectively recruited patients who were admitted to the respiratory care center and who had received mechanical ventilator support for more than 10 days in the intensive care unit. The study subjects were followed for the occurrence of nosocomial infection until 6 weeks after admission, hospital discharge, or death. The cytokine levels in the plasma samples were measured. Single-cell immunometabolic regulome profiling by mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets, was performed to identify immunometabolic features associated with the risk of nosocomial infection. During the study period, 37 patients were enrolled, and 16 patients (43.2%) developed nosocomial infection. Unsupervised immunologic clustering using multidimensional scaling and logistic regression analyses revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and fatty acid transport, respectively, in natural killer (NK) cells was significantly associated with nosocomial infection. Downregulated NRF1 and upregulated CPT1a were found in all subsets of NK cells from patients who developed a nosocomial infection. The risk of nosocomial infection is significantly correlated with the predictive score developed by selecting NK cell-specific features using an elastic net algorithm. Findings were further examined in an independent cohort of COVID-19-infected patients, and the results confirm that COVID-19-related mortality is significantly associated with mitochondria biogenesis and fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that NK cell-specific immunometabolic features are significantly associated with the occurrence and fatal outcomes of infection in critically ill population, and provides mechanistic insights into NK cell-specific immunity against microbial invasion in critical illness.

3.
World J Gastrointest Oncol ; 16(2): 398-413, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425403

RESUMO

BACKGROUND: Prohibitin 1 (PHB1) has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed, and it participates in a variety of essential cellular functions, including apoptosis, cell cycle regulation, proliferation, and survival. Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma (HCC). However, the role of PHB1 in HCC is controversial. AIM: To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro. METHODS: HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria; then, PHB1 levels in the sera and liver tissues of these participates were determined using ELISA, RT-PCR, and immunohistochemistry. Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA (shRNA-PHB1) for 24-72 h. Cell proliferation was analysed with an MTT assay. Cell cycle progression and apoptosis were analysed using flow cytometry (FACS). The mRNA and protein expression levels of the cell cycle-related molecules p21, Cyclin A2, Cyclin E1, and CDK2 and the cell apoptosis-related molecules cytochrome C (Cyt C), p53, Bcl-2, Bax, caspase 3, and caspase 9 were measured by real-time PCR and Western blot, respectively. RESULTS: Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals, and decreased PHB1 was positively correlated with low differentiation, TNM stage III-IV, and alpha-fetoprotein ≥ 400 µg/L. Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner. FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis. The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells. The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41% ± 1.06%, which was significantly greater than that of apoptotic control cells (3.65% ± 0.85%, P < 0.01) and empty vector-transfected cells (4.21% ± 0.52%, P < 0.01). Similar results were obtained with SMMC-7721 cells. Furthermore, the mRNA and protein expression levels of p53, p21, Bax, caspase 3, and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2, Cyclin E1, CDK2, and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells. However, when PHB1 was upregulated in human HCC cells, Cyt C expression levels were increased in the cytosol and decreased in the mitochondria, which indicated that Cyt C had been released into the cytosol. Conversely, these effects were reversed when PHB1 was knocked down. CONCLUSION: PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.

4.
World J Gastrointest Oncol ; 16(2): 458-474, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425400

RESUMO

BACKGROUND: Gastric cancer (GC) is a prevalent malignant tumor of the gastrointestinal system. ZNF710 is a transcription factor (TF), and zinc finger protein 710 (ZNF710)-AS1-201 is an immune-related long noncoding RNA (lncRNA) that is upregulated in GC cells. AIM: To assess the correlation between ZNF710-AS1-201 and immune microenvironment features and to investigate the roles of ZNF710-AS1-201 in the invasion and metastasis processes of GC cells. METHODS: We obtained data from The Cancer Genome Atlas and Wujin Hospital. We assessed cell growth, migration, invasion, and programmed cell death using cell counting kit-8, EdU, scratch, Transwell, and flow cytometry assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify the potential downstream targets of ZNF710-AS1-201. RESULTS: In GC tissues with low ZNF710-AS1-201 expression, immunoassays detected significant infiltration of various antitumor immune cells, such as memory CD8 T cells and activated CD4 T cells. In the low-expression group, the half-maximal inhibitory concentrations (IC50s) of 5-fluorouracil, cisplatin, gemcitabine, and trametinib were lower, whereas the IC50s of dasatinib and vorinostat were higher. The malignant degree of GC was higher and the stage was later in the high-expression group. Additionally, patients with high expression of ZNF710-AS1-201 had lower overall survival and disease-free survival rates. In vitro, the overexpression of ZNF710-AS1-201 greatly enhanced growth, metastasis, and infiltration while suppressing cell death in HGC-27 cells. In contrast, the reduced expression of ZNF710-AS1-201 greatly hindered cell growth, enhanced apoptosis, and suppressed the metastasis and invasion of MKN-45 cells. The expression changes in ZNF710 were significant, but the corresponding changes in isocitrate dehydrogenase-2, Semaphorin 4B, ARHGAP10, RGMB, hsa-miR-93-5p, and ZNF710-AS1-202 were not consistent or statistically significant after overexpression or knockdown of ZNF710-AS1-201, as determined by qRT-PCR. CONCLUSION: Immune-related lncRNA ZNF710-AS1-201 facilitates the metastasis and invasion of GC cells. It appears that ZNF710-AS1-201 and ZNF710 have potential as effective targets for therapeutic intervention in GC. Nevertheless, it is still necessary to determine the specific targets of the ZNF710 TF.

5.
J Hazard Mater ; 467: 133763, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359757

RESUMO

Practical gas sensing application requires sensors to quantify target analytes with high sensitivity and reproducibility. However, conventional surface enhanced Raman scattering (SERS) sensor lacks reproducibility and quantification arising from variations of "hot spot" distribution and measurement conditions. Here, a ratio-dependent SERS sensor was developed for quantitative label-free gas sensing. Au@Ag-Au nanoparticles (NPs) were filtered onto anodic aluminum oxide (AAO) forming Au@Ag-Au@AAO SERS substrate. 4-MBA was encapsulated in the gap of Au@Ag-Au and served as the internal standard (IS) to calibrate SERS signal fluctuation for improved quantification ability. Combined with headspace sampling method, SO2 residue in traditional Chinese medicine (TCM) can be extracted and captured on the immediate vicinity of Au@Ag-Au surface. The intensity ratio I613 cm-1/I1078 cm-1 showed excellent linearity within the range of 0.5 mg/kg-500 mg/kg, demonstrating superior quantification performance for SO2 detection. Signals for concentration as low as 0.05 mg/kg of SO2 could be effectively collected, much lower than the strictest limit 10 mg/kg in Chinese Pharmacopoeia. Combined with a handheld Raman spectrometer, handy and quantitative TCM quality evaluation in aspect of SO2 residue was realized. This ratiometric SERS sensor functioned well in rapid on-site SO2 quantification, exhibiting excellent sensitivity and simple operability.

7.
Front Neurol ; 15: 1255621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361636

RESUMO

Objective: The aim of this study is to investigate the clinical value of radiomics based on non-enhanced head CT in the prediction of hemorrhage transformation in acute ischemic stroke (AIS). Materials and methods: A total of 140 patients diagnosed with AIS from January 2015 to August 2022 were enrolled. Radiomic features from infarcted areas on non-enhanced CT images were extracted using ITK-SNAP. The max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) were used to select features. The radiomics signature was then constructed by multiple logistic regressions. The clinicoradiomics nomogram was constructed by combining radiomics signature and clinical characteristics. All predictive models were constructed in the training group, and these were verified in the validation group. All models were evaluated with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results: Of the 140 patients, 59 experienced hemorrhagic transformation, while 81 remained stable. The radiomics signature was constructed by 10 radiomics features. The clinicoradiomics nomogram was constructed by combining radiomics signature and atrial fibrillation. The area under the ROC curve (AUCs) of the clinical model, radiomics signature, and clinicoradiomics nomogram for predicting hemorrhagic transformation in the training group were 0.64, 0.86, and 0.86, respectively. The AUCs of the clinical model, radiomics signature, and clinicoradiomics nomogram for predicting hemorrhagic transformation in the validation group were 0.63, 0.90, and 0.90, respectively. The DCA curves showed that the radiomics signature performed well as well as the clinicoradiomics nomogram. The DCA curve showed that the clinical application value of the radiomics signature is similar to that of the clinicoradiomics nomogram. Conclusion: The radiomics signature, constructed without incorporating clinical characteristics, can independently and effectively predict hemorrhagic transformation in AIS patients.

8.
Food Chem X ; 21: 101174, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38362527

RESUMO

Unsaturated aliphatic aldehyde oxidation plays a significant role in the deep oxidation of fatty acids to produce volatile chemicals. Exposing the oxidation process of unsaturated aliphatic aldehydes is crucial to completely comprehend how food flavor forms. In this study, thermal desorption cryo-trapping in conjunction with gas chromatography-mass spectrometry was used to examine the volatile profile of (E)-4-decenal during heating, and 32 volatile compounds in all were detected and identified. Meanwhile, density functional theory (DFT) calculations were used, and 43 reactions were obtained in the 24 pathways, which were summarized into the peroxide reaction mechanism (ROOH), the peroxyl radical reaction mechanism (ROO·) and the alkoxy radical reaction mechanism (RO·). Moreover, the priority of these three oxidative mechanisms was the RO· mechanism > ROOH mechanism > ROO· mechanism. Furthermore, the DFT results and experimental results agreed well, and the oxidative mechanism of (E)-4-decenal was finally illuminated.

9.
Nano Lett ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377427

RESUMO

Plasmonic Cu@semiconductor heteronanocrystals (HNCs) have many favorable properties, but the synthesis of solid structures is often hindered by the nanoscale Kirkendall effect. Herein, we present the use of an atomically thin Au3Cu palisade interlayer to reduce lattice mismatch and mediate the Kirkendall effect, enabling the successive topological synthesis of Cu@Au3Cu@Ag, Cu@Au3Cu@Ag2S, and further transformed solid Cu@Au3Cu@CdS core-shell HNCs via cation exchange. The atomically thin and intact Au3Cu palisade interlayer effectively modulates the diffusion kinetics of Cu atoms as demonstrated by experimental and theoretical investigations and simultaneously alleviates the lattice mismatch between Cu and Ag as well as Cu and CdS. The Cu@Au3Cu@CdS HNCs feature exceptional crystallinity and atomically organized heterointerfaces between the plasmonic metal and the semiconductor. This results in the efficient plasmon-induced injection of hot electrons from Cu@Au3Cu into the CdS shell, enabling the Cu@Au3Cu@CdS HNCs to achieve high activity and selectivity for the photocatalytic reduction of CO2 to CO.

10.
J Hazard Mater ; 468: 133796, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377905

RESUMO

Haloacetic acids (HAAs) are ubiquitous in drinking water and have been associated with impaired male reproductive health. However, epidemiological evidence exploring the associations between HAA exposure and reproductive hormones among males is scarce. In the current study, the urinary concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the internal exposure markers of HAAs, as well as sex hormones (testosterone [T], progesterone [P], and estradiol [E2]) were measured among 449 Chinese men. Moreover, in vitro experiments, designed to simulate the real-world scenarios of human exposure, were conducted to assess testosterone synthesis in the Leydig cell line MLTC-1 and testosterone metabolism in the hepatic cell line HepG2 in response to low-dose HAA exposure. The DCAA and TCAA urinary concentrations were found to be positively associated with urinary T, P, and E2 levels (all p < 0.001), but negatively associated with the ratio of urinary T to E2 (p < 0.05). Combined with in vitro experiments, the results suggest that environmentally-relevant doses of HAA stimulate sex hormone synthesis and steroidogenesis pathway gene expression in MLTC-1 cells. In addition, the inhibition of the key gene CYP3A4 involved in the testosterone phase Ⅰ catabolism, and induction of the gene UGT2B15 involved in testosterone phase Ⅱ glucuronide conjugation metabolism along with the ATP-binding cassette (ABC) transport genes (ABCC4 and ABCG2) in HepG2 cells could play a role in elevation of urinary hormone excretion upon low-dose exposure to HAAs. Our novel findings highlight that exposure to HAAs at environmentally-relevant concentrations is associated with increased synthesis and excretion of sex hormones in males, which potentially provides an alternative approach involving urinary hormones for the noninvasive evaluation of male reproductive health following exposure to DBPs.

11.
J Hazard Mater ; 468: 133759, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38377902

RESUMO

Swine wastewater (SW) application introduces antibiotic resistance genes (ARGs) into farmland soils. However, ARG attenuation in SW-fertigated soils, especially those influenced by staple crops and soil type, remains unclear. This study investigated twelve soil ARGs and one mobile genetic element (MGE) in sandy loam, loam, and silt loam soils before and after SW application in wheat-planted and unplanted soils. The results revealed an immediate increase in the abundance of ARGs in soil by two orders of magnitude above background levels following SW application. After SW application, the soil total ARG abundance was attenuated, reaching background levels at 54 days; However, more individual ARGs were detected above the detection limit than pre-application. Among the 13 genes, acc(6')-lb, tetM, and tetO tended to persist in the soil during wheat harvest. ARG half-lives were up to four times longer in wheat-planted soils than in bare soils. Wheat planting decreased the persistence of acc(6')-lb, ermB, ermF, and intI2 but increased the persistence of others such as sul1 and sul2. Soil type had no significant impact on ARG and MGE fates. Our findings emphasize the need for strategic SW application and the consideration of crop cultivation effects to mitigate ARG accumulation in farmland soils.

12.
Plant Dis ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381966

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp tritici (Pst), is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust resistance wheat-tetraploid Th. elongatum 1E/1D substitution line K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line T1BS·1EL using genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), oligo-FISH-Painting, and the wheat 55K single nucleotide polymorphisms (SNPs) genotyping array. The T1BS·1EL is highly resistant to stripe rust at the seedling and adult stage. Pedigree and molecular marker analyses revealed that the resistance gene was located on chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. Besides, we developed and validated 32 Simple Sequence Repeats (SSR) markers and two kompititive allele specific PCR (KASP) assays which were specific to tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.

13.
Chem Mater ; 36(3): 1238-1248, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370277

RESUMO

In situ synchrotron powder X-ray diffraction (PXRD) study was conducted on sodium and potassium tetrafluoroborate (NaBF4 and KBF4) to elucidate structural changes across solid-solid phase transitions over multiple heating-cooling cycles. The phase transition temperatures from diffraction measurements are consistent with the differential scanning calorimetry data (∼240 °C for NaBF4 and ∼290 °C for KBF4). The crystal structure of the high-temperature (HT) NaBF4 phase was determined from synchrotron PXRD data. The HT disordered phase of NaBF4 crystallizes in the hexagonal, space group P63/mmc (no. 194) with a = 4.98936(2) Å, c = 7.73464(4) Å, V = 166.748(2) Å3, and Z = 2 at 250 °C. Density functional theory molecular dynamics (MD) calculations imply that the P63/mmc is indeed a stable structure for rotational NaBF4. MD simulations reproduce the experimental phase sequence upon heating and indicate that F atoms are markedly more mobile than K and B atoms in the disordered state. Thermal expansion coefficients for both phases were determined from high-precision lattice parameters at elevated temperatures, as obtained from Rietveld refinement of the PXRD data. Interestingly, for the HT-phase of NaBF4, the structure (upon heating) contracts slightly in the a-b plane but expands in the c direction such that overall thermal expansion is positive. Thermal conductivities at room temperature were measured, and the values are 0.8-1.0 W m-1 K-1 for NaBF4 and 0.55-0.65 W m-1 K-1 for KBF4. The thermal conductivity and diffusivity showed a gradual decrease up to the transition temperature and then rose slightly. Both materials show good thermal and structural stabilities over multiple heating/cooling cycles.

14.
Pak J Med Sci ; 40(3Part-II): 326-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356823

RESUMO

Objective: Gestational diabetes mellitus (GDM) seriously influences the health of mothers and babies, and there are still no effective early diagnostic markers. Therefore, our study planned to probe the correlation between serum microRNA-122 and VEGF expression and pregnancy outcome in GDM patients. Methods: This was a retrospective study of the correlation between serum microRNA-122 and vascular endothelial growth factor (VEGF) expression and pregnancy outcome in GDM patients. Sixty GDM patients admitted to the Fourth Hospital of Shijiazhuang from January 2021 to October 2022 were included in the research group (RG), and another 60 healthy pregnant women were included in the control group (CG). Serum miR-122 and VEGF levels were quantified using quantitative real-time polymerase chain reaction. The value of miR-122 and VEGF in predicting adverse pregnancy outcomes was analyzed by receiver operating characteristic curve. Results: Serum miR-122 and VEGF levels in the RG were higher relative to the CG. The total occurrence of adverse pregnancy outcomes in the RG was higher relative to the CG (P<0.05). Serum miR-122 together with VEGF levels in the poor outcome group was higher relative to the good outcome group (P<0.05). ROC analysis revealed that miR-122 and VEGF could be used to predict adverse pregnancy outcome (P<0.0001). The area under the curve of miR-122 was 0.860, 95% confidence interval (CI) =0.793-0.926, and the area under the curve of VEGF was 0.780, 95% CI =0.694-0.866. Serum levels of miR-122, VEGF were positively related with abortion, preterm delivery, low birth weight infants, macrogenesis infants, and fetal development abnormalities (P<0.001). Conclusion: The higher serum miR-122 and VEGF levels in GDM patients with satisfactory blood glucose control, the greater the probability of adverse pregnancy outcome, which should be paid attention to by clinicians.

15.
Front Pharmacol ; 15: 1331673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357306

RESUMO

Objectives: Nadroparin, a low-molecular-weight-heparin is commonly used off-label in neonates and infants for thromboembolic events prevention. However, the recommended dosing regimen often fails to achieve therapeutic target ranges. This study aimed to develop a population pharmacokinetic (PK) model of nadroparin to determine an appropriate dosing regimen for neonates and infants less than 8 months. Methods: A retrospective chart review was conducted on patients treated with nadroparin at Children's Hospital of Fudan University between July 2021 and December 2023. A population PK model was developed using anti-Xa levels, and its predictive performance was evaluated internally. Monte Carlo simulations were performed to design an initial dosing schedule targeting anti-Xa levels between 0.5 and 1 IU/mL. Results: A total of 40 neonates and infants aged less than 8 months with gestational age ranging from 25 to 41 weeks treated with nadroparin were enrolled in the study for analysis. A one-compartment PK model with first order absorption and elimination was adequately fitted to the data. Creatinine clearance was identified as a significant factor contributing to inter-individual variability in clearance. The typical population parameter estimates of clearance, distribution volume and absorption rate in this population were 0.211 L/h, 1.55 L and 0.495 h-1, respectively. Our findings suggest that current therapeutic doses of nadroparin (150-200 IU/kg q12 h) may result in subtherapeutic exposure, thus higher doses might be required. Conclusion: The present study offers the first estimation of PK parameters for nadroparin in preterm or term neonates and infants less than 8 months utilizing the model. Our findings have potential implications for recommending initial personalized dosages, particularly among patient populations exhibiting similar characteristics.

16.
Resusc Plus ; 17: 100570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357677

RESUMO

Introduction: The objective of this multi-center retrospective cohort study was to devise a predictive tool known as RAPID-ED. This model identifies non-traumatic adult patients at significant risk for cardiac arrest within 48 hours post-admission from the emergency department. Methods: Data from 224,413 patients admitted through the emergency department (2016-2020) was analyzed, incorporating vital signs, lab tests, and administered therapies. A multivariable regression model was devised to anticipate early cardiac arrest. The efficacy of the RAPID-ED model was evaluated against traditional scoring systems like National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS) and its predictive ability was gauged via the area under the receiver operating characteristic curve (AUC) in both hold-out validation set and external validation set. Results: RAPID-ED outperformed traditional models in predicting cardiac arrest with an AUC of 0.819 in the hold-out validation set and 0.807 in the external validation set. In this critical care update, RAPID-ED offers an innovative approach to assessing patient risk, aiding emergency physicians in post-discharge care decisions from the emergency department. High-risk score patients (≥13) may benefit from early ICU admission for intensive monitoring. Conclusion: As we progress with advancements in critical care, tools like RAPID-ED will prove instrumental in refining care strategies for critically ill patients, fostering an improved prognosis and potentially mitigating mortality rates.

17.
Physiol Plant ; 176(1): e14197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344855

RESUMO

Increased acid phosphatase (APase) activity is a prominent feature of tomato (Solanum lycopersicum) responses to inorganic phosphate (Pi) restriction. SlPHL1, a phosphate starvation response (PHR) transcription factor, has been identified as a positive regulator of low Pi (LP)-induced APase activity in tomato. However, the molecular mechanism underlying this regulation remains to be elucidated. Here, SlPHL1 was found to positively regulate the LP-induced expression of five potential purple acid phosphatase (PAP) genes, namely SlPAP7, SlPAP10b, SlPAP12, SlPAP15, and SlPAP17b. Furthermore, we provide evidence that SlPHL1 can stimulate transcription of these five genes by binding directly to the PHR1 binding sequence (P1BS) located on their promoters. The P1BS mutation notably weakened SlPHL1 binding to the promoters of SlPAP7, SlPAP12, and SlPAP17b but almost completely abolished SlPHL1 binding to the promoters of SlPAP10b and SlPAP15. As a result, the transcriptional activation of SlPHL1 on SlPAP10b and SlPAP15 was substantially diminished. In addition, not only did transient overexpression of either SlPAP10b or SlPAP15 in tobacco leaves increase APase activity, but overexpression of SlPAP15 in Arabidopsis and tomato also increased APase activity and promoted plant growth. Subsequently, two SPX proteins, SlSPX1 and SlSPX4, were shown to physically interact with SlPHL1. Moreover, SlSPX1 inhibited the transcriptional activation of SlPHL1 on SlPAP10b and SlPAP15 and negatively regulated the activity of APase. Taken together, these results demonstrate that SlPHL1-mediated LP signaling promotes APase activity by activating the transcription of SlPAP10b and SlPAP15, which may provide valuable insights into the mechanisms of tomato response to Pi-limited stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Fosfatos , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
18.
Heliyon ; 10(3): e24888, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317882

RESUMO

The outbreak of COVID-19 has affected countries across the world, including those in Africa. Governments in these countries have implemented various policies to curb the spread of the virus. However, the effectiveness of these policies largely depends on how the public perceives them. This study aims to investigate public perceptions of government policies regarding COVID-19 in six African countries by conducting a sentiment analysis of the public. The motivation behind this study relies in the recognition that a deeper understanding of public perceptions is essential for crafting effective strategies that resonate with the diverse needs and concerns of the population, ultimately contributing to the ongoing global efforts to navigate the complexities of the COVID-19 pandemic. We collected tweets related to COVID-19 and government policies on Twitter's API from March 07, 2020 to February 02, 2022. We performed data processing steps such as tokenization and stop-word removal to clean the data. Next, we used Natural Language Processing (NLP) techniques to classify the sentiment of each tweet as positive, negative, or neutral. The six African countries selected for this study are Nigeria, South Africa, Kenya, Ghana, Rwanda, and Uganda. We collected 134,494 tweets on Twitter accounts and we evaluated policies by countries in three categories: while some countries implemented too strict policies, others implemented strict or relaxed policies. The findings of this study will provide valuable insights into how the public perceived the policies. This is used to advice policymakers and public health officials on enhancing their messaging and policies to combat the spread of COVID-19 effectively. Data showed heterogeneous reactions with negative perceptions, for instance, earlier, different governments implemented face mask and lockdown policies and vaccination policy later. Researchers and policymakers should exercise caution and consider complementary data sources and methods to ensure a more comprehensive and accurate understanding of public perceptions in the context of government policies related to COVID-19; also, investigate how government policies during the pandemic may have affected the environment, such as changes in pollution levels, waste management, and conservation efforts.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38393744

RESUMO

Supported platinum nanoparticle catalysts are known to convert polyolefins to high-quality liquid hydrocarbons using hydrogen under relatively mild conditions. To date, few studies using platinum grafted onto various metal oxide (MxOy) supports have been undertaken to understand the role of the acidity of the oxide support in the carbon-carbon bond cleavage of polyethylene under consistent catalytic conditions. Specifically, two Pt/MxOy catalysts (MxOy = SrTiO3 and SiO2-Al2O3; Al = 3.0 wt %, target Pt loading 2 wt % Pt ∼1.5 nm), under identical catalytic polyethylene hydrogenolysis conditions (T = 300 °C, P(H2) = 170 psi, t = 24 h; Mw = ∼3,800 g/mol, Mn = ∼1,100 g/mol, D = 3.45, Nbranch/100C = 1.0), yielded a narrow distribution of hydrocarbons with molecular weights in the range of lubricants (Mw = < 600 g/mol; Mn < 400 g/mol; D = 1.5). While Pt/SrTiO3 formed saturated hydrocarbons with negligible branching, Pt/SiO2-Al2O3 formed partially unsaturated hydrocarbons (<1 mol % alkenes and ∼4 mol % alkyl aromatics) with increased branch density (Nbranch/100C = 5.5). Further investigations suggest evidence for a competitive hydrocracking mechanism occurring alongside hydrogenolysis, stemming from the increased acidity of Pt/SiO2-Al2O3 compared to Pt/SrTiO3. Additionally, the products of these polymer deconstruction reactions were found to be independent of the polyethylene feedstock, allowing the potential to upcycle polyethylenes with various properties into a value-added product.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38412364

RESUMO

The metal-nitrogen-carbon (M-N-C)-based catalysts are promising to replace PGM (platinum group metal) to accelerate oxygen reduction reaction due to their excellent electrocatalytic performance. However, the inferior intrinsic activity and poor active site density confining further improvement in their performance. Modulating the electronic structure and reasonably designing the pore structure are widely acknowledged effective strategies to boost the activity of the M-N-C catalysts. However, it is a great challenge to form abundant pores to regulate the electronic structure via the facile method. Herein, a hierarchical, porous dual-atom catalyst FeNi-NPC-1000 has been architectured by the Na2CO3 template method and bimetallic doping modification strategy. Benefitting from the optimized pore and electronic structure, the as-prepared FeNi-NPC-1000 possesses a high specific surface area (1412.8 m2 g-1) and improved ORR activity (E1/2 = 0.877 V vs RHE), which is superior to that of Pt/C (E1/2 = 0.867 V vs RHE). With the evidence of AC-STEM, XAS, and DFT, the FeNi-N8-C moiety is proven to be the key active site to realize high-efficiency ORR catalysis. When assembled it as an air cathode of ZABs, FeNi-NPC-1000 displays superior discharge performance (Pmax = 367.1 mW cm-2) and a stable battery long-life. This article will provide a new strategy for designing dual-metal atomic catalysts applied in metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...