Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 883
Filtrar
1.
Sci Total Environ ; 919: 170688, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38320702

RESUMO

Drought induced by climate warming and human activities regulates carbon (C) cycling of peatlands by changing plant community composition and soil properties. Estimating the responses of peatlands C cycling to environmental changes requires further study of C: nitrogen (N): phosphorus (P) stoichiometric ratios of soil, plants, and enzyme activities. However, systematic studies on the stoichiometry of above-ground and below-ground ecosystems of peatlands post drainage remain scarce. This study compared stoichimetric ratios of plant and soil and stoichimetric ratios of enzyme activities with different functions in two different parts of a minerotrophic peatland, a natural undisturbed part and a part that had been drained for almost 50 years, in Northern China. For the shrub plants, the average C:N:P ratios of leaf in natural and drained peatland were 448:17:1 and 393:15:1, respectively. This indicated that the growth rate of shrub plants is higher in the drained peatland than in the natural peatland, which makes P element more concentrated in the photosynthetic site. However, from the perspective of the dominant plant, the mean C:N:P ratio of Carex leaf was 650:25:1 in the natural peatland, but was 1028:50:1 for Dasiphora fruticosa in drained peatland. This indicated that the intensification of P-limitation of plant growth after drainage. Soil C:N:P ratios of above water table depth (AWT) were 238:15:1 and 277:12:1, but were 383:17:1 and 404:19:1 for below water table depth (BWT) in the natural and the drained peatland, respectively. Soil C:P ratios were greater than the threshold elemental ratio of C:P (174:1), but the soil C:N ratios were less than the threshold elemental ratio of C:N (23:1), which suggested that P was the most limiting nutrient of soil. The soil microbial activities were co-limited by C&P in Baijianghe peatlands. However, the microbial metabolic P limitation was intensified, but the C limitation was weakened for the above water table depth soil after long-term drainage. There are connection between plant-microbe P limitation in peatlands. The P limitation of microbial metabolism was significant positively correlated with soil C:N but negatively with soil moisture. The increase in the lignocelluloses index suggested considerable decomposition of soil organic matter after peatland drainage. These results of stoichiometric ratios from above- to below ground could provide scientific base for the C cycling of peatland undergone climate change.

2.
Cereb Cortex ; 34(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314605

RESUMO

The aim of this study was to investigate brain structure and corresponding static and dynamic functional connectivity (sFC & dFC) abnormalities in untreated, first-episode pediatric idiopathic generalized epilepsy (IGE), with the goal of better understanding the underlying pathological mechanisms of IGE. Thirty-one children with IGE and 31 age-matched healthy controls (HC) were recruited. Structural magnetic resonance imaging (sMRI) data were acquired, and voxel-based morphometry (VBM) analysis were performed to reveal abnormal gray matter volume (GMV). Moreover, sFC and dFC analyses were conducted using the brain areas exhibiting abnormal GMV as seed regions to explore abnormal functional couplings. Compared to HC, the IGE group exhibited increased GMV in left middle cingulate cortex (MCC) and right parahippocampus (ParaHipp). In addition, the analyses of dFC and sFC with MCC and ParaHipp as seeds revealed more extensive functional connectivity (FC) changes in dFC. Notably, the structurally and functionally abnormal brain areas were primarily localized in the default mode network (DMN). However, our study did not find any significant associations between these altered neuroimaging measurements and clinical outcomes. This study uncovered microstructural changes as well as corresponding sFC and dFC changes in patients with new-onset, untreated pediatric IGE. The affected brain regions were primarily located within the DMN, highlighting the DMN's crucial role in the development of pediatric IGE.


Assuntos
Mapeamento Encefálico , Epilepsia Generalizada , Humanos , Criança , Mapeamento Encefálico/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Imunoglobulina E
3.
Am J Cancer Res ; 14(1): 324-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323285

RESUMO

Immunogenic cell death (ICD) is a type of cell death that plays a pivotal role in immunity. Recent studies have identified the critical role of ICD in glioma treatment. This study aimed to use ICD-associated differentially expressed genes (ICD-DEGs) to predict survival of glioma patients. We investigated the relationship between clinical prognosis and the date-to-clinical prognosis of 1,721 glioma patients by examining the expression, methylation, and mutation status of ICD-related genes (IRGs) in these patients. Our prediction of survival in glioma patients was based on three risk genes, and we explored the association between these genes and clinical outcomes. Additionally, IRG expression was used to stratify glioma patients. We further examined the relationship among the three subgroups in terms of immune microenvironment heterogeneity and immunotherapy response. In addition, this study also included analyses of histograms and sensitivity to antitumor drugs. The expression of these genes was externally validated by RT-qPCR, Western blot (WB), and immunohistochemistry (IHC) in glioma and normal brain tissue. Our findings reveal that most IRGs are overexpressed in glioma tumor tissues, and this high expression was confirmed through histological validation. We successfully developed predictive models for three prognostic genes associated with ICD. These models not only predict survival in glioma but also correlate with the tumor's immune microenvironment. Finally, using consensus clustering, we identified three ICD-associated subtypes. Notably, patients with the C3 subtype showed high levels of immune cell infiltration, whereas those with the C1 subtype exhibited lower levels of immune cell infiltration. We successfully developed an innovative IRG-based systematic approach for evaluating glioma patients. This stratification in experimental studies opens new avenues for prognosis and assessing immunotherapy responses in glioma patients. Our study demonstrates the effectiveness of this approach in treating glioma, potentially paving the way for more promising and effective therapeutic strategies in the future.

4.
J Clin Transl Hepatol ; 12(2): 162-171, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343613

RESUMO

Background and Aims: SARS-CoV-2 vaccines-associated autoimmune liver diseases have been reported in several case reports. However, the safety and immunogenicity after primary and booster inactivated SARS-CoV-2 vaccination in patients with autoimmune liver diseases (AILD) is still unknown. Methods: Eighty-four patients with AILD were prospectively followed up after the second dose (primary) of inactivated SARS-CoV-2 vaccine. Some of them received the third dose (booster) of inactivated vaccine. Adverse events (AEs), autoimmune activation, and liver inflammation exacerbation after primary and booster vaccination were recorded. Meanwhile, dynamics of antireceptor-binding-domain IgG (anti-RBD-IgG), neutralizing antibodies (NAbs) and RBD-specific B cells responses were evaluated. Results: The overall AEs in AILD patients after primary and booster vaccination were 26.2% and 13.3%, respectively. The decrease of C3 level and increase of immunoglobulin light chain κ and λ levels were observed in AILD patients after primary vaccination, however, liver inflammation was not exacerbated, even after booster vaccination. Both the seroprevalence and titers of anti-RBD-IgG and NAbs were decreased over time in AILD patients after primary vaccination. Notably, the antibody titers were significantly elevated after booster vaccination (10-fold in anti-RBD-IgG and 7.4-fold in NAbs, respectively), which was as high as in healthy controls. Unfortunately, the inferior antibody response was not enhanced after booster vaccination in patients with immunosuppressants. Changes of atypical memory B cells were inversely related to antibody levels, which indicate that the impaired immune memory was partially restored partly by the booster vaccination. Conclusions: The well tolerability and enhanced humoral immune response of inactivated vaccine supports an additional booster vaccination in AILD patients without immunosuppressants.

5.
ACS Biomater Sci Eng ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346133

RESUMO

Dental resin composites (DRCs) are commonly used to restore teeth affected by dental caries or defects. These materials must possess excellent properties to withstand the complex oral environment. The objective of this study was to prepare and characterize Boron nitride nanosheets (BNN)/ dimethyl amino hexadecyl methacrylate (DMAHDM) composites (BNN/DMA), and to evaluate them as functional fillers to enhance the mechanical and antimicrobial properties of dental resins. The BNN/DMA composites were successfully prepared under the theoretical guidance of molecular dynamics (MD), and then the physicochemical and morphological characterization of the BNN/DMA composites were carried out by using various test methods, such as FT-IR, XRD, UV-vis spectroscopy, SEM, TEM, and AFM. It was doped into the dental flowable resin in a certain proportion, and the results showed that the flexural strength (FS), elastic modulus (EM), compressive strength (CS), and microhardness (MH) of the modified resin composites were increased by 53.29, 47.8, 97.59, and 37.1%, respectively, with the addition of 0.8 wt % of BNN/DMA composite fillers. It has a good inhibition effect on Streptococcus mutans, with an inhibition rate as high as 90.43%. Furthermore, this effect persists even after one month of aging. In conclusion, the modification of flowable resins with low-concentration BNN/DMA composites favorably integrates the mechanical properties and long-term antimicrobial activity of dental resins. At the same time, they have good biocompatibility and do not affect the aesthetics. The BNN/DMA composite modified flowable resin has the potential to become a new type of antimicrobial dental restorative material.

6.
Genome Med ; 16(1): 30, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347596

RESUMO

BACKGROUND: Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors. METHODS: We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions. RESULTS: We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes. CONCLUSIONS: This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Redes Reguladoras de Genes , Microambiente Tumoral/genética
7.
Angew Chem Int Ed Engl ; : e202400289, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372474

RESUMO

Electrocatalytic nitrate reduction to ammonia is a promising approach in term of pollutant appreciation. Cu-based catalysts performs a leading-edge advantage for nitrate reduction due to its favorable adsorption with *NO3. However, the formation of active hydrogen (*H) on Cu surface is difficult and insufficient, leading to the significant generation of by-product NO2-. Herein, sulphur doped Cu (Cu-S) is prepared via an electrochemical conversion strategy and used for nitrate electroreduction. The high Faradaic efficiency (FE) of ammonia (~98.3%) and an extremely low FE of nitrite (~1.4%) are achieved on Cu-S, obviously superior to its counterpart of Cu (FENH3: 70.4%, FENO2-: 18.8%). Electrochemical in situ characterizations and theoretical calculations indicate that a small amount of S doping on Cu surface can promote the kinetics of H2O dissociation to active hydrogen. The optimized hydrogen affinity validly decreases the hydrogenation kinetic energy barrier of *NO2, leading to an enhanced NH3 selectivity.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38301037

RESUMO

Heavy metals in sludge can react with sulfur and be converted into metal sulfides with good floatability through hydrothermal sulfidation. This is a novel method for the recovery of heavy metals from sludge. In this paper, sulfidation behavior research on the microwave hydrothermal sulfidation of heavy metal-containing waste for zinc was carried out. Sulfur ions with strong sulfidation ability can exist in a wider pH range at high temperature in the microwave hydrothermal sulfidation reaction system. High temperature is beneficial to the sulfidation of zinc in heavy metal-containing sludge. The increase in the microwave hydrothermal sulfidation temperature and the prolongation of the sulfidation time of the heavy metal-containing sludge are beneficial to the growth of the crystal size of the artificially synthesized zinc sulfide. The main particle size of the sulfurization product formed by microwave hydrothermal sulfurization is 0.5-1.0 µm. FTIR and XPS results show that zinc sulfide mainly exists in the form of ZnS, which improves the surface hydrophobicity of the particles and causes flocculation and agglomeration among the particles after microwave hydrothermal sulfidation of heavy metal-containing sludge, which will be conducive to the subsequent flotation recovery of zinc.

9.
Small Methods ; : e2301558, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308417

RESUMO

Nanofluidic membranes are currently being explored as potential candidates for osmotic energy harvesting. However, the development of high-performance nanofluidic membranes remains a challenge. In this study, the ultrathin MXene membrane (H-MXM) is prepared by ultrathin slicing and realize the ion horizontal transportation. The H-MXM membrane, with a thickness of only 3 µm and straight subnanometer channels, exhibits ultrafast ion transport capabilities resembling an "ion freeway". By mixing artificial seawater and river water, a power output of 93.6 W m-2 is obtained. Just as cell membranes have an ultrathin thickness that allows for excellent penetration, this straight nanofluidic membrane also possesses an ultrathin structure. This unique feature helps to shorten the ion transport path, leading to an increased ion transport rate and improveS performance in osmotic energy conversion.

10.
Nano Lett ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341876

RESUMO

Antibiotic therapeutics to combat intestinal pathogen infections often exacerbate microbiota dysbiosis and impair mucosal barrier functions. Probiotics are promising strategies, because they inhibit pathogen colonization and improve intestinal microbiota imbalance. Nevertheless, their limited targeting ability and susceptibility to oxidative stress have hindered their therapeutic potential. To tackle these challenges, Ces3 is synthesized by in situ growth of CeO2 nanozymes with positive charges on probiotic spores, facilitating electrostatic interactions with negatively charged pathogens and possessing a high reactive oxygen species (ROS) scavenging activity. Importantly, Ces3 can resist the harsh environment of the gastrointestinal tract. In mice with S. Typhimurium-infected acute gastroenteritis, Ces3 shows potent anti-S. Typhimurium activity, thereby alleviating the dissemination of S. Typhimurium into other organs. Additionally, owing to its O2 deprivation capacity, Ces3 promotes the proliferation of anaerobic probiotics, reshaping a healthy intestinal microbiota. This work demonstrates the promise of combining antibacterial, anti-inflammatory, and O2 content regulation properties for acute gastroenteritis therapy.

11.
Angew Chem Int Ed Engl ; : e202317167, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323917

RESUMO

Hydroxylamine (NH2OH) is an important feedstock in fuels, pharmaceuticals, and agrochemicals. Nanostructured electrocatalysts drive green electrosynthesis of hydroxylamine from nitrogen oxide species in water. However, current electrocatalysts still suffer from low selectivity and manpower-consuming trial-and-error modes, leaving unclear selectivity/activity origins and a lack of catalyst design principles. Herein, we theoretically analyze key determinants of selectivity/activity and propose the adsorption energy of NHO (Gad(*NHO)) as a performance descriptor. A weak *NH2OH binding affinity and a favorable reaction pathway (*NHO pathway) jointly enable single-atom catalysts (SACs) with superior NH2OH selectivity. Then, an activity volcano plot of Gad(*NHO) is established to predict a series of SACs and discover Mn SACs as optimal electrocatalysts that exhibit pH-dependent activity. These theoretical prediction results are also confirmed by experimental results, rationalizing our Gad(*NHO) descriptor. Furthermore, Mn-Co geminal-atom catalysts (GACs) are predicted to optimize Gad(*NHO) and are experimentally proved to enhance NH2OH formation.

12.
Cell Chem Biol ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38183989

RESUMO

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.

13.
Nanotechnology ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198714

RESUMO

In the supercapacitor field, negative electrodes are mainly concentrated in carbon-based materials, such as activated carbon, carbon nanotubes, graphene, and so forth. However, materials based on metal-organic frameworks (MOFs) as negative active components are relatively rare. Herein, a series of composite materials based on graphene oxide (GO) and vanadate-based Fe-organic frameworks have been prepared by hydrothermal method namely GO/Fe-VO4-BIPY. The deposition amount of polyoxometalate-based metal-organic frameworks (POMOFs) on the surface of graphene is adjusted by changing the content of POMOFs. Through the deposition, it can effectively reduce the accumulation between graphene, and increase the dispersion of POMOFs. As a result, the charge storage performance of the as-obtained materials is greatly improved. Among these materials, GO/Fe-VO4-BIPY-1 has the most prominent performance due to its excellent synergistic effect between the Faraday chemical reaction and electric double-layer capacitance. In comparison with pristine Fe-VO4-BIPY, GO/Fe-VO4-BIPY-1 delivers more excellent surface area and therefore exhibits abundant redox reaction sites, achieving better electrochemical performance the best. After assembly with the positive Ni(OH)2 electrode, the maximum energy density of 46.84 W h kg-1 at a power density of 850 W kg-1 is achieved. .

14.
Anal Chim Acta ; 1287: 342116, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182389

RESUMO

Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.


Assuntos
Algoritmos , Micotoxinas , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
15.
Hepatology ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231043

RESUMO

BACKGROUND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and drug-induced liver injury (DILI), particularly acetaminophen (APAP) toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH RESULTS: We analyzed liver tissue from two independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8+ T cells were characterised by zonation towards necrotic regions and an activated gene expression signature. In murine APAP-induced liver injury, intravital microscopy revealed zonation of CD8+ but not CD4+ T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in liver as well as a broadly activated phenotype of hepatic CD8+ T cells. In two mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8+ T cells, but regulated their activation profile potentially via egress to lymphatics. Ccr7-/- CD8+ T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8+ T cells to the liver, and depletion of CD8+ T cells attenuated liver damage in mice. CONCLUSION: Our study demonstrates an involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

16.
Forensic Sci Int Genet ; 69: 103008, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244524

RESUMO

Inferring the number of contributors (NoC) is a crucial step in interpreting DNA mixtures, as it directly affects the accuracy of the likelihood ratio calculation and the assessment of evidence strength. However, obtaining the correct NoC in complex DNA mixtures remains challenging due to the high degree of allele sharing and dropout. This study aimed to analyze the impact of allele sharing and dropout on NoC inference in complex DNA mixtures when using microhaplotypes (MH). The effectiveness and value of highly polymorphic MH for NoC inference in complex DNA mixtures were evaluated through comparing the performance of three NoC inference methods, including maximum allele count (MAC) method, maximum likelihood estimation (MLE) method, and random forest classification (RFC) algorithm. In this study, we selected the top 100 most polymorphic MH from the Southern Han Chinese (CHS) population, and simulated over 40 million complex DNA mixture profiles with the NoC ranging from 2 to 8. These profiles involve unrelated individuals (RM type) and related pairs of individuals, including parent-offspring pairs (PO type), full-sibling pairs (FS type), and second-degree kinship pairs (SE type). Our results indicated that how the number of detected alleles in DNA mixture profiles varied with the markers' polymorphism, kinship's involvement, NoC, and dropout settings. Across different types of DNA mixtures, the MAC and MLE methods performed best in the RM type, followed by SE, FS, and PO types, while RFC models showed the best performance in the PO type, followed by RM, SE, and FS types. The recall of all three methods for NoC inference were decreased as the NoC and dropout levels increased. Furthermore, the MLE method performed better at low NoC, whereas RFC models excelled at high NoC and/or high dropout levels, regardless of the availability of a priori information about related pairs of individuals in DNA mixtures. However, the RFC models which considered the aforementioned priori information and were trained specifically on each type of DNA mixture profiles, outperformed RFC_ALL model that did not consider such information. Finally, we provided recommendations for model building when applying machine learning algorithms to NoC inference.


Assuntos
Algoritmos , Impressões Digitais de DNA , Humanos , Genótipo , Impressões Digitais de DNA/métodos , DNA/genética , Aprendizado de Máquina
17.
Food Chem ; 441: 138350, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183725

RESUMO

Based on the fluorescence sensor of 3-Mercaptopropionic acid (MPA) capped CdTe quantum dots (QDs), two novel detection methods for aklomide and nitromide were developed. The MPA-CdTe QDs were synthesized and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), ultraviolet visible (UV-vis) and fluorescence (FL). The quenchings were all static. The binding constants (Ka) at different temperatures were obtained. Electrostatic forces were the main forces for the two bindings. For the detection of aklomide and nitromide, under the optimal conditions, the effects of some metal ions, glucose, bovine serum albumin (BSA) and congeneric drug on the determination were explored. The standard equations were established and the limits of detection (LOD) were 0.0215 and 0.0388 µg mL-1 (3S0/S), repectively. The methods were applied to analyse the samples of chicken and duck, the recoveries were 99.41 % - 101.24 % with RSDs of 0.29 % - 1.19 % (n = 5).


Assuntos
Benzamidas , Compostos de Cádmio , Pontos Quânticos , Pontos Quânticos/química , Compostos de Cádmio/química , Fluorescência , Telúrio/química , Espectrometria de Fluorescência
18.
J Hazard Mater ; 465: 133434, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198861

RESUMO

The wide use of animal manure in farmland operations is a source of soil nutrients. However, the return of manure affected antibiotics and microplastics in the soil, thus the potential ecological risks cannot be overlooked. This study investigated the distribution of different antibiotics and microplastics and their correlation. It was found that multiple classes of veterinary antibiotics and microplastics could be detected simultaneously in most manure and soil. In manure, the average concentration of tetracycline antibiotics was higher than fluoroquinolones and sulfonamides. A much lower concentration of antibiotics was found in the soil samples relative to manure. The abundance of microplastics ranged from 21,333 to 88,333 n/kg in manure, and the average abundance was 50,583 ± 24,318 n/kg. The average abundance was 3056 ± 1746 n/kg in the soil. It confirmed that applying organic fertilizer to agricultural soil and the application of plastic mulch in farmlands introduced microplastics. Moreover, microplastics were found to be significantly correlated with antibiotics (r = 0.698, p < 0.001). The correlation between microplastics and antibiotics in soil was significantly weaker than that in manure. Farms could be the hotspot for the co-spread of microplastics and antibiotics. These findings highlighted the co-occurrence of antibiotics and microplastics in agricultural environments.


Assuntos
Antibacterianos , Solo , Animais , Fazendas , Esterco/análise , Microplásticos , Plásticos , China
19.
J Mater Chem B ; 12(6): 1495-1511, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38223916

RESUMO

The success of guided bone regeneration (GBR) surgery depends largely on the use of GBR membranes to maintain space for bone regeneration and prevent soft tissue ingrowth. However, currently available commercial degradable GBR membranes are often limited by poor space maintenance ability and require additional suture or nail for fixation. To overcome these limitations, we developed a rapid-shaping, adhesive, and user-friendly GBR membrane (PLGA film-PGN) with long-lasting space maintenance by immersing an electrospun poly(lactide-co-glycolic acid) film in a photo-crosslinkable hydrogel composed of polyethylene glycol diacrylate, gelatin methacryloyl, and nanosilicate (PGN). The PGN hydrogel significantly improved the mechanical strength of the PLGA film-PGN and endowed it with plasticity and adhesive properties, making it more maneuverable. The maximum bending force that the PLGA film-PGN could withstand was over 55 times higher than that of the HEAL ALL film (a commonly used commercial GBR membrane). PLGA film-PGN also promoted the proliferation and osteogenic differentiation of rBMSCs. According to a critical-size rat calvarial defect model, PLGA film-PGN maintained the space within the defect area and significantly enhanced bone formation 4 weeks after the surgery. To conclude, the study provided a novel perspective on GBR membrane design and the multifunctional PLGA film-PGN membrane demonstrated great potential for bone defect reconstruction.


Assuntos
Osteogênese , Mantenedor de Espaço em Ortodontia , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Membranas Artificiais , Regeneração Óssea , Hidrogéis
20.
J Am Chem Soc ; 146(5): 3230-3240, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277259

RESUMO

The ability to quantify cocaine in biological fluids is crucial for both the diagnosis of intoxication and overdose in the clinic as well as investigation of the drug's pharmacological and toxicological effects in the laboratory. To this end, we have performed high-stringency in vitro selection to generate DNA aptamers that bind cocaine with nanomolar affinity and clinically relevant specificity, thus representing a dramatic improvement over the current-generation, micromolar-affinity, low-specificity cocaine aptamers. Using these novel aptamers, we then developed two sensors for cocaine detection. The first, an in vitro fluorescent sensor, successfully detects cocaine at clinically relevant levels in 50% human serum without responding significantly to other drugs of abuse, endogenous substances, or a diverse range of therapeutic agents. The second, an electrochemical aptamer-based sensor, supports the real-time, seconds-resolved measurement of cocaine concentrations in vivo in the circulation of live animals. We believe the aptamers and sensors developed here could prove valuable for both point-of-care and on-site clinical cocaine detection as well as fundamental studies of cocaine neuropharmacology.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cocaína , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Soro , Cocaína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...