Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.555
Filtrar
1.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589685

RESUMO

Excessive acetaminophen (APAP) can induce neutrophil activation and hepatocyte death. Along with hepatocyte dysfunction and death, NETosis (a form of neutrophil-associated inflammation) plays a vital role in the progression of acute liver injury (ALI) induced by APAP overdose. It has been shown that activated neutrophils tend to migrate towards the site of injury and participate in inflammatory processes via formation of neutrophil extracellular traps (NETs). In this study we investigated whether NETs were involved in hepatocyte injury and contributed to APAP-induced ALI progression. ALI mouse model was established by injecting overdose (350 mg/kg) of APAP. After 24 h, blood and livers were harvested for analyses. We showed that excessive APAP induced multiple programmed cell deaths of hepatocytes including pyroptosis, apoptosis and necroptosis, accompanied by significantly increased NETs markers (MPO, citH3) in the liver tissue and serum. Preinjection of DNase1 (10 U, i.p.) for two consecutive days significantly inhibited NETs formation, reduced PANoptosis and consequently alleviated excessive APAP-induced ALI. In order to clarify the communication between hepatocytes and neutrophils, we induced NETs formation in isolated neutrophils, and treated HepaRG cells with NETs. We found that NETs treatment markedly increased the activation of GSDMD, caspase-3 and MLKL, while pre-treatment with DNase1 down-regulated the expression of these proteins. Knockdown of AIM2 (a cytosolic innate immune receptor) abolished NETs-induced PANoptosis in HepaRG cells. Furthermore, excessive APAP-associated ALI was significantly attenuated in AIM2KO mice, and PANoptosis occurred less frequently. Upon restoring AIM2 expression in AIM2KO mice using AAV9 virus, both hepatic injury and PANoptosis was aggravated. In addition, we demonstrated that excessive APAP stimulated mtROS production and mitochondrial DNA (mtDNA) leakage, and mtDNA activated the TLR9 pathway to promote NETs formation. Our results uncover a novel mechanism of NETs and PANoptosis in APAP-associated ALI, which might serve as a therapeutic target.

2.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562774

RESUMO

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.

3.
Int J Biol Macromol ; 266(Pt 2): 131359, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580018

RESUMO

The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.

4.
Physiol Rep ; 12(7): e16000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584117

RESUMO

Few standardized tools are available for evaluation of disorders of consciousness (DOC). The potential of heart rate variability (HRV) during head-up tilt (HUT) test was investigated as a complementary evaluation tool. Twenty-one DOC patients and 21 healthy participants were enrolled in this study comparing clinical characteristics and HRV time- and frequency-domain outcomes and temporal changes during HUT test. During the 1st-5th min of the HUT, DOC group showed a significant increase and decrease in log low frequency (LF) (p = 0.045) and log normalized high frequency (nHF) (p = 0.02), respectively, compared to the supine position and had lower log normalized LF (nLF) (p = 0.004) and log ratio of low-to-high frequency (LF/HF) (p = 0.001) compared to healthy controls. As the HUT continued from the 6th to the 20th min, DOC group exhibited a significant increase in log LF/HF (16th-20th min) (p < 0.05), along with a decrease in log nHF (6th-10th and 16th-20th min) (p < 0.05) and maintained lower log LF, log nLF, and log LF/HF than controls (p < 0.05). 1st-10th min after returning to the supine position, DOC group demonstrated a significant decrease in log nHF (p < 0.01) and increases in log LF/HF (p < 0.01) and had lower log LF (p < 0.01) and log nLF (p < 0.05) compared to controls. In contrast, the control group exhibited a significant decrease in log nHF (p < 0.05) and increase in log LF/HF (p < 0.05) throughout the entire HUT test. Notably, no significant differences were observed when comparing time-domain outcomes reflecting parasympathetic nervous system between the two groups. HRV during HUT test indicated a delayed and attenuated autonomic response, particularly in the sympathetic nervous system, in DOC patients compared with healthy individuals.


Assuntos
Transtornos da Consciência , Sistema Nervoso Simpático , Humanos , Frequência Cardíaca/fisiologia , Teste da Mesa Inclinada , Sistema Nervoso Autônomo/fisiologia
5.
Small ; : e2401078, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593301

RESUMO

Currently, the only thermoelectric (TE) materials commercially available at room temperature are those based on bismuth telluride. However, their widespread application is limited due to their inferior thermoelectric and mechanical properties. In this study, a strategy of growing a rigid second phase of MoSe2 is employed, in situ within the matrix phase to achieve n-type bismuth telluride-based materials with exceptional mechanical and thermoelectric properties. The in situ grown second phase contributes to both the electronic and lattice thermal conductivities. This is primarily attributed to the strong energy filtering effect, as the second phase forms a semi-common lattice interfacial structure with the matrix phase during growth. Furthermore, for composites containing 2 wt% MoSe2, a maximum zT value of 1.24 at 373 K can be achieved. On this basis, 8-pair TE module is fabricated and 1-pair TE module is optimized using a homemade p-type material. The optimized 1-pair TE module generates a maximum output power of 13.6 µW, which is twice that of the 8-pair TE module and four times more than the 8-pair TE module fabricated by commercial material. This work facilitates the development of the TE module by presenting a novel approach to obtaining bismuth telluride-based thermoelectric materials with superior thermoelectric and mechanical properties.

6.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566102

RESUMO

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapêutico
7.
Nat Commun ; 15(1): 2894, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570494

RESUMO

Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.


Assuntos
Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Domesticação , Melhoramento Vegetal , Esteroides
8.
ACS Omega ; 9(12): 13714-13727, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559997

RESUMO

Herein, Cellulose-templated Zn1-XCuXO/Ag2O nanocomposites were prepared using biological renewable cellulose extracted from water hyacinth (Eichhornia crassipes). Cellulose-templated Cu-doped ZnO catalysts with different amounts of Cu as the dopants (1, 2, 3, and 4%) were prepared and denoted CZ-1, CZ-2, CZ-3, and CZ-4, respectively, for simplicity. The prepared catalysts were tested for the degradation of methylene blue (MB), and 2% Cu-doped ZnO (CZ-2) showed the best catalytic performance (82%), while the pure ZnO, CZ-1, CZ-3, and CZ-4 catalysts exhibited MB dye degradation efficiencies of 54, 63, 65, and 60%, respectively. The best catalyst (CZ-2) was chosen to further improve the degradation efficiency. Different amounts of AgNO3 (10, 15, 30, and 45 mg) were used for the deposition of Ag2O on the surface of CZ-2 and denoted CZA-10, CZA-15, CZA-30, and CZA-45, respectively. Among the composite catalysts, CZA-15 showed remarkable degradation efficiency and degraded 94% of MB, while the CZA-10, CZA-30, and CZA-45 catalysts showed 90, 81, and 79% degradation efficiencies, respectively, under visible light within 100 min of irradiation. The enhanced catalytic performance could be due to the smaller particle size, the higher electron and hole separation and charge transfer efficiencies, and the lower agglomeration in the composite catalyst system. The results also demonstrated that the Cu-doped ZnO prepared with cellulose as a template, followed by the optimum amount of Ag2O deposition, could have promising applications in the degradation of organic pollutants.

9.
Heliyon ; 10(7): e28409, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560098

RESUMO

Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through immunogenic modulation. However, the combination of PTX and ICD has not been extensively studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by overlapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and selection operator (LASSO) were performed to obtain biomarkers and build a risk model. Following observing the immune microenvironment in differential risk subgroups, single-gene gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified and a risk model was built. The model's performance was validated using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX-ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in predicting BRCA treatment outcomes.

10.
Physiol Rep ; 12(7): e15990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575554

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are rapidly gaining ground in the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) and acute myocardial infarction (AMI) by an unknown mechanism. Upregulation of Na+/H+ exchanger 1 (NHE1), SGLT1, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the diseased hearts was found to be attenuated by prolonged SGLT2i treatment. Unfortunately, dapagliflozin is not well understood as to how Na+/Ca2+ homeostasis is affected in cardiomyocytes. In this study, we aimed to investigate whether mechanical stretch in cardiomyocytes upregulate SGLT2, resulted to loss of Na+/Ca2+ homeostasis via ERK and eNOS signaling. AMI (+) and AMI (-) serum levels were estimated using ELISA assays of TGFß-1 or endoglin (CD105). Human cardiomyocyte cell line AC16 was subjected to different stresses: 5% mild and 25% aggressive, at 1 Hz for 24 h. Immunofluorescence assays were used to estimate troponin I, CD105, SGLT1/2, eNOSS633, and ERK1/2T202/Y204 levels was performed for 5% (mild), and 25% elongation for 24 h. AMI (+) serum showed increased TGFß1 and CD105 compared to AMI (-) patients. In consistent, troponin I, CD105, SGLT1/2, eNOSS633 and ERK1/2T202/Y204 were upregulated after 25% of 24 h cyclic stretch. Dapagliflozin addition caused SGLT2 inhibition, which significantly decreased troponin I, CD105, SGLT1/2, eNOSS633, and ERK1/2T202/Y204 under 25% cyclic stretching. In summary, SGLT2 may have sensed mechanical stretch in a way similar to cardiac overloading as in vivo. By blocking SGLT2 in stretched cardiomyocytes, the AMI biomarkers (CD105, troponin I and P-ERK) were decreased, potentially to rescue eNOS production to maintain normal cellular function. This discovery of CD105 and SGLT2 increase in mechanically stretched cardiomyocytes suggests that SGLT2 may conceive a novel role in direct or indirect sensing of mechanical stretch, prompting the possibility of an in vitro cardiac overloaded cell model, an alternative to animal heart model.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Animais , Endoglina/metabolismo , Insuficiência Cardíaca/metabolismo , Regulação para Cima , Transportador 2 de Glucose-Sódio/metabolismo , Troponina I/metabolismo , Volume Sistólico , Miócitos Cardíacos/metabolismo
11.
Biochem Biophys Res Commun ; 710: 149877, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581956

RESUMO

OxyR, a LysR family transcriptional regulator, plays vital roles in bacterial oxidative stress response. In this study, we found that the deletion of oxyR not only inhibited the antioxidant capacity of S. marcescens FS14, but also decreased the production of prodigiosin. Further study revealed that OxyR activated the prodigiosin biosynthesis at the transcriptional level. Complementary results showed that not only the wild-type OxyR but also the reduced form OxyRC199S could activate the prodigiosin biosynthesis. We further demonstrated that reduced form of wild type OxyR could bind to the promoter of pig gene cluster, and identified the binding sites which is different from oxidized OxyR binding sites in E. coli. Our results demonstrated that OxyR in FS14 uses oxidized form to regulate the expression of the antioxidant related genes and utilizes reduced form to activate prodigiosin production. Further in silico analysis suggested that the activation of prodigiosin biosynthesis by reduced OxyR should be general in S. marcesencs. To our knowledge, this is the first report to show that OxyR uses the reduced form to activate the gene's expression, therefore, our results provide a novel regulation mechanism of OxyR.

12.
Nano Lett ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568783

RESUMO

An interfacial solar steam generation evaporator for seawater desalination has attracted extensive interest in recent years. Nevertheless, challenges still remain in relatively low evaporation rate, unsatisfactory energy conversion efficiency, and salt accumulation. Herein, we have demonstrated a biomimetic bilayer composite aerogel consisting of bottom hydrophilic and vertically aligned EVOH channels and an upper hydrophobic conical Fe3O4 array. Thanks to the design merits, the 3D Fe3O4/V-EVOH evaporator exhibits a high evaporation rate of ∼2.446 kg m-2 h-1 and an impressive solar energy conversion efficiency of ∼165.5% under 1 sun illumination, which is superior to those of state-of-the-art evaporators reported so far. Moreover, the asymmetrical wettability not only allows the evaporator to self-float on the water but also facilitates the salt ion diffusion in the channels; thus, the evaporator shows no salt crystals on its surface and only a 6% decrease in evaporation performance even after the salt concentration increases from 0 to 10.0 wt %.

13.
J Formos Med Assoc ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570236

RESUMO

BACKGROUND: Quality of life (QoL) has been suggested as an indicator of outcomes in autistic adults. Factors associated with QoL in autistic individuals remain unclear. This study aims to examine the subjective QoL for autistic adults in Taiwan and investigate the determinants for different domains of QoL. METHODS: The study comprised 90 autistic adults (aged 26.9, SD 7.3; males, 80.9%). We used Taiwanese version of World Health Organization Quality of Life-BREF to measure QoL. Four domains of QoL were compared with 61 non-autistic controls, including physical, psychological, social, and environment. To identify the correlates of QoL domains, we assessed IQ, personality trait, family support, anxiety/depressive symptoms, autistic severity, and sensory symptoms by various questionnaires, and assessed their association with QoL by correlation analyses and model selection. RESULTS: Our results showed that autistic adults reported lower QoL on the World Health Organization Quality of Life (WHOQOL)-BREF across all domains. QoL was significantly associated with autistic symptom severity, harm avoidance, family support, sensory symptoms, anxiety, and depression, but not intelligence. Model selections revealed male sex, poor paternal support, autism severity, depression, anxiety, and sensory symptoms were associated with specific QoL domains. CONCLUSION: Findings supported lower QoL in autistic adults. Modifying the QoL correlates may improve life quality in autistic adults. Furthermore, our findings revealed the importance of sensory symptoms and paternal support in QoL of autistic adults, which was a novel finding in this population.

14.
Adv Sci (Weinh) ; : e2308337, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572504

RESUMO

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

15.
J Hazard Mater ; 470: 134124, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38565020

RESUMO

Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 µg/L and 124.0 ± 5.1 µg/L, respectively. ATBC at 124.0 µg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.

16.
Front Zool ; 21(1): 10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561769

RESUMO

BACKGROUND: Rapid identification and classification of bats are critical for practical applications. However, species identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extraction of the visual features and classification of objects, with potential application for bat classification. RESULTS: In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHIROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classification. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our methods. CONCLUSION: Our finding will inspire further research on image-based automatic classification of chiropteran species for early detection and potential application in taxonomy.

17.
Technol Cancer Res Treat ; 23: 15330338241242654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584413

RESUMO

Purpose: Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). Methods and Materials: A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). Results: The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. Conclusions: DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Retrospectivos , Órgãos em Risco
18.
Reprod Domest Anim ; 59(4): e14554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566374

RESUMO

High sperm cryotolerance is crucial to the successful cryopreservation of boar sperm. Evaluating the cryotolerance of boar sperm by using a rapid and convenient technique can enhance the commercial viability of these sperm. This study investigated the correlation between sperm parameters for three sample subsets-fresh sperm, sperm with H2O2-induced oxidative damage (hereinafter referred to as H2O2-induced sperm), and frozen-thawed sperm-to identify the potential of these correlations to predict cryotolerance. A total of 64 sperm samples were obtained from 64 Duroc boars. The sperm parameters of the three subsets, where the frozen-thawed sperm were analysed at 30 or 180 min after thawing, were determined, and the coefficients of correlation between these parameters were calculated. The results indicated that H2O2-induced oxidative stress resulted in decreases in various sperm parameters-including total motility (TM), viability (VIA), mitochondrial membrane potential (MMP), and live sperm with MMP (LMP)-but increased their coefficients of variation. Receiver operating characteristic (ROC) curve analysis revealed that the kinematic parameters of the H2O2-induced sperm effectively predicted those of the frozen-thawed boar sperm at 30 min after thawing; the corresponding area under the ROC curve (AUC) was 0.8667 for TM and 0.8733 for progressive motility in the H2O2-induced sperm. For measurement at 180 min after thawing, the sperm membrane and mitochondrial parameters of the H2O2-induced sperm effectively predicted the LMP of the frozen-thawed boar sperm; the corresponding AUC was 0.8489 for VIA, 0.8289 for MMP, and 0.8444 for LMP. To our knowledge, this is the first study to directly establish a strong correlation between post-thaw boar sperm quality and H2O2-induced oxidative stress before freezing. Our proposed technique can serve as a valuable reference for the development of practical applications aimed at enhancing techniques for cryopreserving boar sperm.


Assuntos
Antioxidantes , Preservação do Sêmen , Suínos , Masculino , Animais , Antioxidantes/farmacologia , Sêmen , Peróxido de Hidrogênio/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Criopreservação/veterinária , Criopreservação/métodos , Motilidade dos Espermatozoides
19.
N Engl J Med ; 390(14): 1265-1276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38598794

RESUMO

BACKGROUND: Platinum-based chemotherapy is the recommended adjuvant treatment for patients with resectable, ALK-positive non-small-cell lung cancer (NSCLC). Data on the efficacy and safety of adjuvant alectinib as compared with chemotherapy in patients with resected ALK-positive NSCLC are lacking. METHODS: We conducted a global, phase 3, open-label, randomized trial in which patients with completely resected, ALK-positive NSCLC of stage IB (tumors ≥4 cm), II, or IIIA (as classified according to the seventh edition of the Cancer Staging Manual of the American Joint Committee on Cancer and Union for International Cancer Control) were randomly assigned in a 1:1 ratio to receive oral alectinib (600 mg twice daily) for 24 months or intravenous platinum-based chemotherapy in four 21-day cycles. The primary end point was disease-free survival, tested hierarchically among patients with stage II or IIIA disease and then in the intention-to-treat population. Other end points included central nervous system (CNS) disease-free survival, overall survival, and safety. RESULTS: In total, 257 patients were randomly assigned to receive alectinib (130 patients) or chemotherapy (127 patients). The percentage of patients alive and disease-free at 2 years was 93.8% in the alectinib group and 63.0% in the chemotherapy group among patients with stage II or IIIA disease (hazard ratio for disease recurrence or death, 0.24; 95% confidence interval [CI], 0.13 to 0.45; P<0.001) and 93.6% and 63.7%, respectively, in the intention-to-treat population (hazard ratio, 0.24; 95% CI, 0.13 to 0.43; P<0.001). Alectinib was associated with a clinically meaningful benefit with respect to CNS disease-free survival as compared with chemotherapy (hazard ratio for CNS disease recurrence or death, 0.22; 95% CI, 0.08 to 0.58). Data for overall survival were immature. No unexpected safety findings were observed. CONCLUSIONS: Among patients with resected ALK-positive NSCLC of stage IB, II, or IIIA, adjuvant alectinib significantly improved disease-free survival as compared with platinum-based chemotherapy. (Funded by F. Hoffmann-La Roche; ALINA ClinicalTrials.gov number, NCT03456076.).

20.
Oncoimmunology ; 13(1): 2340154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601319

RESUMO

Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...