Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.522
Filtrar
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767492

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

3.
J Colloid Interface Sci ; 674: 766-777, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955008

RESUMO

Plasmon-mediated chemical reactions (PMCR) have garnered growing interest as a promising concept for photocatalysis. However, in electrochemical systems at solid-liquid interfaces, the photo-induced charge transfer on the surface of metal-semiconductor heterostructures involves complex processes and mechanisms, which are still poorly understood. We explore the plasmon-mediated carrier transfer mechanism and the synergistic effect of light and electric fields on Ag-TiO2 heterostructures, through a combination of electrochemical surface-enhanced Raman spectroscopy and photoelectrochemical methods, with para-aminothiophenol (PATP) serving as a probe molecule. The results show that photocurrent responses are dependent on not only excitation wavelengths and applied potentials, but also the irreversibility of redox. The relationship between photocurrent responses and the chemical transformation between PATP and 4,4'-dimercaptoazobenzene is established, reflecting the photo-induced charge transfer of the heterostructures. The collaboration of spectroscopic and photoelectrochemical methods provide valuable insights into the chemical transformation and kinetic information of adsorbed molecules on the heterostructure during PMCR, offering opportunities for modulating of photocatalytic activities of hot carriers.

4.
Neuromodulation ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958631

RESUMO

OBJECTIVE: This study aims to elucidate a novel, minimally invasive surgical technique using a biportal endoscope for the implantation of spinal cord stimulation (SCS) paddle leads and to report the preliminary results of its clinical application. MATERIALS AND METHODS: The perioperative data of patients who underwent the biportal endoscopic SCS paddle lead implantation in our department were collected; the surgical procedure was delineated, and the clinical outcomes were assessed. RESULTS: From February 2022 to December 2023, six patients underwent biportal endoscopic SCS paddle lead implantation. The median follow-up time was nine months (range one to three months). The median intraoperative blood loss was 30 mL (range 25-50 mL), and the median operative time was 87.5 minutes (range 75-110 minutes). One patient experienced severe neck pain during the operation, whereas the other five patients experienced no surgical complications. One patient was found to have a slight lead migration three months after surgery, which did not affect the therapeutic effect. The median visual analogue scale (VAS) of the surgical area was 0.5 (range 0-2), 2.5 (range 1-4), and 0.5 (range 0-1) during the operation and one day and one week after the operation, respectively. The median VAS of the six patients' primary disease was 8 (range 7-9) before surgery and 2.5 (range 1-4) at the last postoperative follow-up (pain reduction ≥50%). CONCLUSION: Paddle lead systems for SCS can be implanted successfully using a biportal endoscopic technique.

5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 402-408, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38953264

RESUMO

There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.


Assuntos
Nível de Alerta , Córtex Pré-Frontal , Área Tegmentar Ventral , Córtex Pré-Frontal/fisiologia , Área Tegmentar Ventral/fisiologia , Nível de Alerta/fisiologia , Humanos , Animais , Vias Neurais/fisiologia
6.
J Geriatr Cardiol ; 21(6): 669-681, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38973823

RESUMO

Cardiovascular disease remains the leading cause of mortality in women, yet it has not raised the awareness from the public. The pathogenesis of cardiovascular disease differs significantly between females and males concerning the effect of sex hormones. Estrogen and progestogen impact cardiovascular system through genomic and non-genomic effects. Before menopause, cardiovascular protective effects of estrogens have been well described. Progestogens were often used in combination with estrogens in hormone therapy. Fluctuations in sex hormone levels, particularly estrogen deficiency, were considered the specific risk factor in women's cardiovascular disease. However, considerable heterogeneity in the impact of hormone therapy was observed in clinical trials. The heterogeneity is likely closely associated with factors such as the initial time, administration route, dosage, and formulation of hormone therapy. This review will delve into the pathogenesis and hormone therapy, summarizing the effect of female sex hormones on hypertension, pre-eclampsia, coronary heart disease, heart failure with preserved ejection fraction, and cardiovascular risk factors specific to women.

7.
Heliyon ; 10(12): e32623, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975173

RESUMO

Diabetic neuropathy (DN) represents a common and debilitating complication of diabetes, affecting a significant proportion of patients. Despite available treatments focusing on symptom management, there remains an unmet need for therapies that address the underlying pathophysiology. In pursuit of novel interventions, this study evaluated the therapeutic effects of caffeic acid-a natural phenolic compound prevalent in various foods-on diabetic neuropathy using a mouse model, particularly examining its interaction with the Insulin-like Growth Factor 1 (IGF-1) signaling pathway. Caffeic acid was administered orally at two dosages (5 mg/kg and 10 mg/kg), and a comprehensive set of outcomes including fasting blood glucose levels, body weight, sensory behavior, spinal cord oxidative stress markers, inflammatory cytokines, and components of the IGF-1 signaling cascade were assessed. Additionally, to determine the specific contribution of IGF-1 signaling to the observed benefits, IGF1R inhibitor Picropodophyllin (PPP) was co-administered with caffeic acid. Our results demonstrated that caffeic acid, at both dosages, effectively reduced hyperglycemia and alleviated sensory behavioral deficits in diabetic mice. This was accompanied by a marked decrease in oxidative stress markers and an increase in antioxidant enzyme activities within the spinal cord. Significantly lowered microglial activation and inflammatory cytokine expression highlighted the potent antioxidative and anti-inflammatory effects of caffeic acid. Moreover, increases in both serum and spinal levels of IGF-1, along with elevated phosphorylated IGF1R, implicated the IGF-1 signaling pathway as a mediator of caffeic acid's neuroprotective actions. The partial reversal of caffeic acid's benefits by PPP substantiated the pivotal engagement of IGF-1 signaling in mediating its effects. Our findings delineate the capability of caffeic acid to mitigate DN symptoms, particularly through reducing spinal oxidative stress and inflammation, and pinpoint the integral role of IGF-1 signaling in these protective mechanisms. The insights gleaned from this study not only position caffeic acid as a promising dietary adjunct for managing diabetic neuropathy but also highlight the therapeutic potential of targeting spinal IGF-1 signaling as part of a strategic treatment approach.

8.
Heliyon ; 10(12): e32727, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994078

RESUMO

Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.

9.
World J Gastrointest Oncol ; 16(6): 2673-2682, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994136

RESUMO

BACKGROUND: RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described. AIM: To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC. METHODS: We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression. RESULTS: The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors. CONCLUSION: This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.

10.
World J Gastrointest Oncol ; 16(6): 2463-2475, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994169

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Serum biomarkers play an important role in the early diagnosis and prognosis of HCC. Because a certain percentage of HCC patients are negative for alpha-fetoprotein (AFP), the diagnosis of AFP-negative HCC is essential to improve the detection rate of HCC. AIM: To establish an effective model for diagnosing AFP-negative HCC based on serum tumour biomarkers. METHODS: A total of 180 HCC patients were enrolled in this study. The expression levels of GP73, des-γ-carboxyprothrombin (DCP), CK18-M65, and CK18-M30 were detected by a fully automated chemiluminescence analyser. The variables were selected by logistic regression analysis. Several models were constructed using stepwise backward logistic regression. The performance of the models was compared using the C statistic, integrated discrimination improvement, net reclassification improvement, and calibration curves. The clinical utility of the nomogram was assessed using decision curve analysis (DCA). RESULTS: The results showed that the expression levels of GP73, DCP, CK18-M65, and CK18-M30 were significantly greater in AFP-negative HCC patients than in healthy controls (P < 0.001). Multivariate logistic regression analysis revealed that GP73, DCP, and CK18-M65 were independent factors for diagnosing AFP-negative HCC. By comparing the diagnostic performance of multiple models, we included GP73 and CK18-M65 as the model variables, and the model had good discrimination ability (area under the curve = 0.946) and good goodness of fit. The DCA curves indicated the good clinical utility of the nomogram. CONCLUSION: Our study identified GP73 and CK18-M65 as serum biomarkers with certain application value in the diagnosis of AFP-negative HCC. The diagnostic nomogram based on CK18-M65 combined with GP73 demonstrated good performance and effectively identified high-risk groups of patients with HCC.

11.
World J Clin Cases ; 12(19): 3918-3924, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994313

RESUMO

BACKGROUND: Amyloidosis is a rare disorder that can be classified into various types, and the most common type is the systemic light chain type. The prognosis of this disease is extremely poor. In general, amyloidosis mainly affects the kidneys and heart and manifests as abnormal proliferation of clonal plasma cells. Cases in which the liver is the primary organ affected by amyloidosis, as in this report, are less common in clinical practice. CASE SUMMARY: A 62-year-old man was admitted with persistent liver dysfunction of unknown cause and poor treatment outcomes. His condition persisted, and he developed chronic liver failure, with severe cholestasis in the later stage that was gradually accompanied by renal injury. Ultimately, he was diagnosed with hepatic amyloidosis through liver biopsy and pathological examination. CONCLUSION: Hepatic amyloidosis rarely occurs in the clinic, and liver biopsy and pathological examination can assist in the accurate and effective diagnosis of this condition.

12.
Nat Cell Biol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997456

RESUMO

Gasdermin (GSDM) family proteins, known as the executors of pyroptosis, undergo protease-mediated cleavage before inducing pyroptosis. We here discovered a form of pyroptosis mediated by full-length (FL) GSDME without proteolytic cleavage. Intense ultraviolet-C irradiation-triggered DNA damage activates nuclear PARP1, leading to extensive formation of poly(ADP-ribose) (PAR) polymers. These PAR polymers are released to the cytoplasm, where they activate PARP5 to facilitate GSDME PARylation, resulting in a conformational change in GSDME that relieves autoinhibition. Moreover, ultraviolet-C irradiation promotes cytochrome c-catalysed cardiolipin peroxidation to elevate lipid reactive oxygen species, which is then sensed by PARylated GSDME, leading to oxidative oligomerization and plasma membrane targeting of FL-GSDME for perforation, eventually inducing pyroptosis. Reagents that concurrently stimulate PARylation and oxidation of FL-GSDME, synergistically promoting pyroptotic cell death. Overall, the present findings elucidate an unreported mechanism underlying the cleavage-independent function of GSDME in executing cell death, further enriching the paradigms and understanding of FL-GSDME-mediated pyroptosis.

14.
Front Endocrinol (Lausanne) ; 15: 1402937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045274

RESUMO

Background: The relationship between the intake of dietary fatty acids (FA) and bone mineral density (BMD) has been the subject of prior investigations. However, the outcomes of these studies remain contentious. The objective of this research is to examine the link between dietary FA consumption among adolescents and BMD. Methods: This study utilized high-quality data from the National Health and Nutrition Examination Survey database, spanning 2011 to 2018, to explore the association between dietary fatty acids and bone health indicators in adolescents, including BMD and bone mineral content (BMC). Analyses were performed using weighted multivariate linear regression models, incorporating detailed subgroup analysis. Results: The study included 3440 participants. Analysis demonstrated that intake of saturated fatty acids (SFA) was positively correlated with total BMD, left arm BMD, total BMC, and left arm BMC. Monounsaturated fatty acid (MUFA) intake was positively correlated with BMC across most body parts, though it showed no correlation with BMD. Intake of polyunsaturated fatty acids (PUFA) was significantly inversely correlated with both BMD and BMC in most body parts. Additionally, subgroup analysis indicated that variables such as sex, age, standing height, and race significantly influenced the correlation between FA intake and BMD. Conclusions: Our study indicates that dietary intake of SFA may benefit to BMD in adolescents, in contrast to PUFA and MUFA. Therefore, we recommend that adolescents maintain a balanced intake of SFA to promote optimal bone mass development while preserving metabolic health.


Assuntos
Densidade Óssea , Ácidos Graxos , Inquéritos Nutricionais , Humanos , Densidade Óssea/efeitos dos fármacos , Adolescente , Feminino , Masculino , Criança , Ácidos Graxos/administração & dosagem , Adulto Jovem , Gorduras na Dieta/administração & dosagem , Estudos Transversais
15.
Neuroreport ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38973500

RESUMO

Acupuncture can reduce blood pressure, heart rate (HR), and ameliorate cardiac damage by modulating the excitability of the sympathetic nervous system, but the exact mechanism of this effect remains unclear. This study investigated the potential mechanisms of acupuncture in the treatment of cardiac damage in hypertension. Spontaneously hypertensive rats (SHR) were used as the hypertension model with Wistar-Kyoto rats as the control. Manual acupuncture, electroacupuncture, and metoprolol were used as interventions. Systolic and diastolic blood pressure (SBP, DBP) plus HR were monitored with cardiac structure determined using Masson staining. Angiotensin II (Ang II) and norepinephrine in myocardium were detected with ELISA as was Ang(1-7) and gamma aminobutyric acid (GABA) in the rostral ventrolateral medulla (RVLM). Expression of mRNA for collagen type I (Col-I), Col-III, actin α1 (ACTA1), and thrombospondin 4 (THBS4) in myocardium was detected using real-time PCR. Expression of angiotensin converting enzyme (ACE), Ang II, angiotensin II type 1 receptor (AT1R), ACE2, and Mas receptor (MasR) proteins in RVLM was monitored using western blot. After manual acupuncture and electroacupuncture treatment, SHRs showed decreased SBP, DBP and HR, reduced myocardial damage. There was decreased expression of the ACE/Ang II/AT1R axis, and increased expression of the ACE2/Ang(1-7)/MasR axis within the RVLM. GABA levels were increased within the RVLM and norepinephrine levels were decreased in myocardial tissue. Metoprolol was more effective than either manual acupuncture or electroacupuncture. Acupuncture directed against hypertensive cardiac damage may be associated with regulation of ACE/Ang II/AT1R and the ACE2/Ang(1-7)/MasR pathway within the RLVM to reduce cardiac sympathetic excitability.

16.
J Ethnopharmacol ; 334: 118535, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972529

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Blumea balsamifera (L.) DC. (BB), the source of Blumea balsamifera oil (BBO), is an aromatic medicinal plant, renowned for its pharmacological properties and its traditional use in Southeast Asian countries such as China, Thailand, Vietnam, Malaysia, and the Philippines for centuries. Traditionally, BB has been used as a raw herbal medicine for treating various skin conditions like eczema, dermatitis, athlete's foot, and wound healing for skin injuries. AIM OF THE STUDY: This research aimed to explore the inhibitory effects of BBO on skin aging using two models: in vitro analysis with human dermal fibroblasts (HDF) under UVB-induced stress, and in vivo studies on UVA-induced dorsal skin aging in mice. The study sought to uncover the mechanisms behind BBO's anti-aging effects, specifically, its impact on cellular and tissue responses to UV-induced skin aging. MATERIALS AND METHODS: We applied doses of 10-20 µL/mL of BBO to HDF cells that had been exposed to UVB radiation to simulate skin aging. We measured cell viability, and levels of reactive oxygen species (ROS), SA-ß-gal, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In addition, we investigated the involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways in mediating the anti-aging effects of BBO. Histopathological and biochemical analyses were conducted in a mouse model to examine the effects of BBO on UV-induced photoaging. RESULTS: UV exposure accelerated aging, and caused cellular damage and inflammatory responses through ROS-mediated pathways. In HDF cells, BBO treatment countered the UVB-induced senescence, and the recovery of cell viability was correlated to notable reductions in SA-ß-gal, ROS, pro-inflammatory cytokines, and MMPs. Mechanistically, the anti-aging effect of BBO was associated with the downregulation of the JNK/NF-κB signaling pathways. In the in vivo mouse model, BBO exhibited protective capabilities against UV-induced photoaging, which were manifested by the enhanced antioxidant enzyme activities and tissue remodeling. CONCLUSIONS: BBO effectively protects fibroblasts from UV-induced photoaging through the JNK/NF-κB pathway. Recovery from photoaging involves an increase in dermal fibroblasts, alleviation of inflammation, accelerated synthesis of antioxidant enzymes, and slowed degradation of ECM proteins. Overall, BBO enhances the skin's defensive capabilities against oxidative stress, underscoring its potential as a therapeutic agent for oxidative stress-related skin aging.

17.
Int J Colorectal Dis ; 39(1): 108, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008124

RESUMO

BACKGROUND AND AIMS: Video-assisted anal fistula treatment (VAAFT) is an innovative surgical approach enabling the direct visualization of the fistula tract structure. This study aims to assess the efficacy of VAAFT in comparison with that of traditional surgical methods and explore potential risk factors contributing to fistula recurrence to provide new recommendations for surgical selection. MATERIALS AND METHODS: Information was collected from 100 patients with complex anal fistula (CAF) in our hospital who underwent surgical treatment from January 2021 to January 2023. We compared the baseline information and surgical outcomes of two groups, analyzed the risk factors for fistula recurrence by using logistic regression analysis, and conducted further exploration by using the body mass index. RESULTS: Equal numbers of patients underwent VAAFT and traditional surgeries, and no significant differences in baseline information were observed. Patients who received VAAFT experienced less intraoperative bleeding (15.5 (14.0-20.0) vs. 32.0 (25.0-36.0)), shorter hospital stays (2.0 (2.0-2.5) vs. 3.0 (3.0-3.5)), reduced postoperative pain and wound discharge, but longer operative times (43.3 ± 6.9 vs. 35.0 (31.5-40.0)) compared with patients who underwent traditional surgeries. No significant differences in recurrence rates were found three and six months after operation (the p-values were 0.790 and 0.806, respectively). However, the Wexner scores of the VAAFT group were significantly low in the first follow-up (0 (0-1.0) vs. 2.0 (1.0-2.0)). Postoperative recurrence of fistulas may be associated with obesity (p-value = 0.040), especially in patients undergoing traditional surgeries (p-value = 0.036). CONCLUSION: VAAFT offers advantages, such as less pain, less trauma, and faster recovery, compared with traditional surgical treatment. Obese patients with CAF are prone to recurrence, and we recommend that they undergo VAAFT treatment rather than traditional surgeries.


Assuntos
Obesidade , Fístula Retal , Recidiva , Cirurgia Vídeoassistida , Humanos , Fístula Retal/cirurgia , Fístula Retal/etiologia , Obesidade/complicações , Obesidade/cirurgia , Feminino , Masculino , Resultado do Tratamento , Pessoa de Meia-Idade , Adulto , Fatores de Risco , Índice de Massa Corporal , Duração da Cirurgia , Tempo de Internação
18.
J Environ Manage ; 366: 121876, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018855

RESUMO

Integrated MFC-MBR systems effectively remove antibiotics and control the release of antibiotic resistance genes (ARGs). However, the fouling layers on membranes can potentially act as reservoirs for ARGs. This study aims to elucidate the roles of membrane fouling layers and levels in influencing sulfamethoxazole (SMX) removal and ARGs control within an MFC-MBR system. Our findings demonstrate that low-intensity bioelectricity (400-500 mV) mitigates membrane fouling rates. The membrane fouling layer significantly contributes (39%-47%) to SMX removal compared to the cathode/anode zones. Higher extracellular polymeric substance (EPS) content and a lower protein/polysaccharide (PN/PS) ratio favor SMX removal by the membrane fouling layer. Across different levels of membrane fouling, the PN/PS ratio rather than EPS concentration plays a crucial role in SMX removal efficiency. The MFC-MBR with low fouling achieved superior SMX removal (69.1%) compared to medium (54.3%) and high fouling conditions (46.8%). The presence of ARGs in the membrane fouling layer increases with fouling formation, with intrinsic ARGs prevailing. Dense membrane fouling layers effectively retain ARGs, thereby reducing the risk of extracellular ARGs (eARGs) diffusion in effluents. These results provide insights into controlling ARGs in MFC-MBR systems and underscore the significant role of membrane fouling layers in antibiotics and ARGs removal.

19.
Huan Jing Ke Xue ; 45(7): 4196-4205, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022966

RESUMO

Taking the typical yellow soil in Guizhou as the research object, four treatments were set up: no fertilization (CK), single application of chemical fertilizer (NP), 50% organic fertilizer instead of chemical nitrogen fertilizer [1/2(NPM)], and 100% organic fertilizer instead of chemical nitrogen fertilizer (M). The effects of organic fertilizer instead of chemical nitrogen fertilizer on organic carbon and its active components, soil carbon pool management index, soil enzyme activity, and maize and soybean yield in yellow soil were studied in order to provide theoretical basis for scientific fertilization and soil quality improvement in this area. The results showed that the replacement of chemical nitrogen fertilizer by organic fertilizer significantly increased soil pH, organic carbon (SOC), total nitrogen (TN) content, and C/N ratio. Compared with those in the CK and NP treatments, the content and distribution ratio of soil active organic carbon components and soil carbon pool management index (CPMI) were improved by replacing chemical nitrogen fertilizer with organic fertilizer, and the effect of replacing chemical nitrogen fertilizer with 50% organic fertilizer was the best. Compared with those in the NP treatment, the 1/2 (NPM) treatment significantly increased the contents of soil readily oxidizable organic carbon (ROC333, ROC167), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) by 22.90%, 8.10%, 29.32%, and 23.22%, respectively. Compared with those under the CK and NP treatments, organic fertilizer instead of chemical nitrogen fertilizer increased soil enzyme activities. The activities of catalase, urease, sucrase, and phosphatase in the 1/2 (NPM) treatment were significantly increased by 21.89%, 8.24%, 34.91%, and 18.78%, respectively, compared with those in the NP treatment. Compared with that of the NP treatment, the maize yield of the 1/2 (NPM) and M treatments was significantly increased by 44.15% and 17.39%, respectively. There was no significant difference in soybean yield among different fertilization treatments. Correlation analysis showed that soil SOC was significantly positively correlated with ROC333, ROC167, ROC33, DOC, MBC, and soil active organic carbon components, and CPMI was significantly positively correlated with soil organic carbon and its active components (P<0.01). Corn yield was significantly positively correlated with soil enzyme activity, CPMI, total organic carbon, and its active components (P<0.05). Therefore, from the perspective of yield increase and soil fertility, 50% organic fertilizer instead of chemical nitrogen fertilizer was conducive to improving soil quality and soil fertility, which is the key fertilization technology to achieve a high yield of crops in the yellow soil area of Anshun, Guizhou.


Assuntos
Carbono , Fertilizantes , Glycine max , Nitrogênio , Compostos Orgânicos , Solo , Zea mays , Solo/química , Zea mays/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , China , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento
20.
Int J Ophthalmol ; 17(7): 1217-1231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026909

RESUMO

AIM: To study the effect of the NLRP3/autophagy pathway on the photoreceptor inflammatory response and the protective mechanism of CY-09 and astaxanthin (AST). METHODS: ICR mice were intraperitoneally injected NaIO3, CY-09, AST successively and divided into 5 groups, including the control, NaIO3, NaIO3+CY-09, NaIO3+AST, and NaIO3+CY-09+AST groups. Spectral domain optical coherence tomography and flash electroretinogram were examined and the retina tissues were harvested for immunohistochemistry, enzyme linked immunosorbent assay (ELISA), and Western blotting. Retinal pigment epithelium cell line (ARPE-19 cells) and mouse photoreceptor cells line (661W cells) were also treated with NaIO3, CY-09, and AST successively. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Apoptosis was analyzed by flow cytometry. Changes in autophagosome morphology were observed by transmission electron microscopy. Quantitative polymerase chain reaction (qPCR) was used to detect NLRP3 and caspase-1. NLRP3, caspase-1, cleaved caspase-1, p62, Beclin-1, and LC3 protein levels were measured by Western blotting. IL-1ß and IL-18 were measured by ELISA. RESULTS: Compared with the control group, the activity of NaIO3-treated 661W cells decreased within 24 and 48h, apoptosis increased, NLRP3, caspase-1, IL-1ß and IL-18 levels increased, and autophagy-related protein levels increased (P<0.05). Compared with NaIO3 group, CY-09 and AST inhibited apoptosis (P<0.05), reduced NLRP3, caspase-1, IL-1ß and IL-18 expression (P<0.05), and inhibited autophagy. Compared with the other groups, CY-09 combined with AST significantly decreased NLRP3 expression and inhibited the expression of the autophagy-related proteins p62, Beclin-1, and LC3 in vitro and in vivo (P<0.05). CONCLUSION: CY-09 and AST inhibit NaIO3-induced inflammatory damage through the NLRP3/autophagy pathway in vitro and in vivo. CY-09 and AST may protect retina from inflammatory injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA