Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(29): e2310352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368257

RESUMO

Extensive research has focused on developing wide-bandgap metal compound-based passivating contacts as alternatives to conventional doped-silicon-layer-based passivating contacts to mitigate parasitic absorption losses in crystalline silicon (c-Si) solar cells. Herein, thermally-evaporated aluminum halides (AlX)-based electron-selective passivating contacts for c-Si solar cells are investigated. A low contact resistivity of 60.5 and 38.4 mΩ cm2 is obtained on the AlClx/n-type c-Si (n-Si) and AlFx/n-Si heterocontacts, respectively, thanks to the low work function of AlX. Power conversion efficiencies (PCEs) of 19.1% and 19.6% are achieved on proof-of-concept n-Si solar cells featuring a full-area AlClx/Al and AlFx/Al passivating contact, respectively. By further implementing an ultrathin SiO2 passivation interlayer and a pre-annealing treatment, the electron selectivity (especially the surface passivation) of AlX is significantly enhanced. Accordingly, a remarkable PCE of 21% is achieved on n-Si solar cells featuring a full-area SiO2/AlFx/Al rear contact. AlFx-based electron-selective passivating contacts exhibit good thermal stability up to ≈400 °C and better long-term environmental stability. This work demonstrates the potential of AlFx-based electron-selective passivating contact for solar cells.

2.
Adv Mater ; 34(26): e2200344, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524638

RESUMO

Advanced doped-silicon-layer-based passivating contacts have boosted the power conversion efficiency (PCE) of single-junction crystalline silicon (c-Si) solar cells to over 26%. However, the inevitable parasitic light absorption of the doped silicon layers impedes further PCE improvement. To this end, alternative passivating contacts based on wide-bandgap metal compounds (so-called dopant-free passivating contacts (DFPCs)) have attracted great attention, thanks to their potential merits in terms of parasitic absorption loss, ease-of-deposition, and cost. Intensive research activity has surrounded this topic with significant progress made in recent years. Various electron-selective and hole-selective contacts based on metal compounds have been successfully developed, and a champion PCE of 23.5% has been achieved for a c-Si solar cell with a MoOx -based hole-selective contact. In this work, the fundamentals and development status of DFPCs are reviewed and the challenges and potential solutions for enhancing the carrier selectivity of DFPCs are discussed. Based on comprehensive and in-depth analysis and simulations, the improvement strategies and future prospects for DFPCs design and device implementation are pointed out. By tuning the carrier concentration of the metal compound and the work function of the capping transparent electrode, high PCEs over 26% can be achieved for c-Si solar cells with DFPCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA