RESUMO
The subject of the study is an 11-month old IVF baby girl with the typical clinical manifestation of malonyl coenzyme A decarboxylase deficiency, including developmental delay, limb weakness, cardiomyopathy, and excessive excretion of malonic acid and methylmalonic acid. Whole genome sequencing (WGS) revealed a novel heterozygous nonsense mutation (c.672delG, p.Trp224Ter) in the MLYCD gene of the proband and her father and a novel heterozygous deletion in 5'-UTR-exon1-intron1 of the MLYCD gene of the proband and her mother. The patient's cardiac function and limb weakness improved considerably after 3 months of a low-fat diet supplemented with L-carnitine. Furthermore, mapping of gene mutations and clinical manifestations was done by case collection.
RESUMO
The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.
Assuntos
Potenciação de Longa Duração , Sinapses , Animais , Camundongos , Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Neurônios , Células de Purkinje , Sinapses/fisiologia , Fatores de Troca do Nucleotídeo GuaninaRESUMO
[This corrects the article DOI: 10.3389/fpls.2022.900708.].
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The dried fruit of Gardenia jasminoides Ellis (Zhizi in Chinese) is a traditional medicine used for thousands of years in China, Japan and Korea. Zhizi was recorded in Shennong Herbal, as a folk medicine, it reduces fever and treats gastrointestinal disturbance with antiphlogistic effects. Geniposide, an iridoid glycoside, is an important bioactive compound derived from Zhizi and possesses remarkable antioxidant and anti-inflammatory capacities. The pharmacological efficacy of Zhizi is highly related to the antioxidant and anti-inflammatory effects of geniposide. AIM OF THE STUDY: Ulcerative colitis (UC) is a common chronic gastrointestinal disease as a global public health threat. Redox imbalance is an essential factor in the progression and recurrence of UC. This study aimed to explore the therapeutic effect of geniposide on colitis and uncover the underlying mechanisms of geniposide-mediated antioxidant and anti-inflammatory activities. EXPERIMENTAL DESIGN: The study design involved investigating the novel mechanism by which geniposide ameliorates dextran sulfate sodium (DSS)-induced colitis in vivo and lipopolysaccharide (LPS)-challenged colonic epithelial cells in vitro. MATERIALS AND METHODS: The protective effect of geniposide against colitis was evaluated by histopathologic observation and biochemical analysis of colonic tissues in DSS-induced colitis mice. The antioxidant and anti-inflammatory effects of geniposide were evaluated in both DSS-induced colitis mice and LPS-challenged colonic epithelial cells. Immunoprecipitation, drug affinity responsive target stability (DARTS), and molecular docking were performed to identify the potential therapeutic target of geniposide and the potential binding sites and patterns. RESULTS: Geniposide ameliorated the symptoms of DSS-induced colitis and colonic barrier injury, inhibited pro-inflammatory cytokine expression, and suppressed activation of the NF-κB signaling in colonic tissues of DSS-challenged mice. Geniposide also ameliorated lipid peroxidation and restored redox homeostasis in DSS-treated colonic tissues. In addition, in vitro experiments also showed that geniposide exhibited significant anti-inflammatory and antioxidant activity, as evidenced by suppressed IκB-α and p65 phosphorylation and IκB-α degradation, and enhanced the phosphorylation and transcriptional activity of Nrf2 in LPS-treated Caco2 cells. ML385, a specific Nrf2 inhibitor, abolished the protective effect of geniposide against LPS-induced inflammation. Mechanistically, geniposide could bind to KEAP1, thereby disrupting the interaction between KEAP1 and Nrf2, preventing Nrf2 from degradation and activating the Nrf2/ARE signaling pathway, ultimately suppressing the onset of inflammation caused by redox imbalance. CONCLUSIONS: Geniposide ameliorates colitis by activation of Nrf2/ARE signaling, while preventing colonic redox imbalance and inflammatory damage, indicating that geniposide can be considered as a promising lead compound for the treatment of colitis.
RESUMO
Vibrio vulnificus is a fatal, opportunistic human pathogen transmitted through the consumption of raw/undercooked seafood or direct contact. V. vulnificus infection progresses rapidly and has severe consequences; some cases may require amputation or result in death. Growing evidence suggests that V. vulnificus virulence factors and regulators play a large role in disease progression, involving host resistance, cellular damage, iron acquisition, virulence regulation and host immune responses. Its disease mechanism remains largely undefined. Further evaluation of pathogenic mechanisms is important for selecting appropriate measures to prevent and treat V. vulnificus infection. In this review, the possible pathogenesis of V. vulnificus infection is described to provide a reference for treatment and prevention.
Assuntos
Vibrioses , Vibrio vulnificus , Humanos , Virulência , Fatores de VirulênciaRESUMO
OBJECTIVE: Acute lung injury (ALI) is a common complication of critical diseases with high morbidity and mortality. This study explored the regulatory role and mechanism of high mobility histone box 1 protein (HMGB1) on pulmonary fibrosis (PF) after ALI in rats through nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome. METHODS: PF rat models after ALI were established by induction of bleomycin. Degree of fibrosis was assessed by Masson staining and Ashcroft scoring. Hydroxyproline (Hyp) contents in lung tissues and rat lung tissue morphology were detected by enzyme-linked-immunosorbent serologic assay (ELISA) and hematoxylin and eosin staining. The levels of NLRP3, major proteins of NLRP3 inflammasome (NLRP3/ASC/caspase-1), and downstream inflammatory cytokines interleukin (IL)-1 and IL-18 were determined using immunohistochemistry, Western blotting analysis, and ELISA. The nuclear/cytoplasmic nuclear factor erythroid 2-related factor 2 (Nrf2) levels and HO-1 levels were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting analysis. Rats was injected with lentivirus carrying short hairpin (sh)-HMGB1 and zinc protoporphyria (ZNPP) (HO-1 inhibitor) to assess the effects of HMGB1 and HO-1 on PF and NLRP3 inflammasome activation. RESULTS: Bleomycin induced PF after ALI in rats, manifested as patchy fibrosis, atelectasis, and excessive expansion, and increased Aschcroft score and Hyp content. Bleomycin treatment enhanced levels of NLRP3, ASC, caspase-1, IL-1, and IL-18 in rat lung tissues, which promoted activation of NLRP3 inflammasome. HMGB1 was up-regulated in bleomycin-induced rats. HMGB1 knockdown partially reversed NLRP3 inflammasome activation and PF progression. HMGB1 knockdown promoted Nrf2 nuclear translocation and up-regulated HO-1. Suppression of HO-1 partially reversed inhibition of HMGB1 knockdown on NLRP3 inflammasome activation and PF. CONCLUSION: HMGB1 can activate NLRP3 inflammasomes and promote PF by inhibiting the Nrf2/HO-1 pathway.
Assuntos
Lesão Pulmonar Aguda , Proteína HMGB1 , Fibrose Pulmonar , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/complicações , Interleucina-18/metabolismo , Fator 2 Relacionado a NF-E2 , Bleomicina/toxicidade , CaspasesRESUMO
Although previous studies have reported the dysregulation of respiratory tract microbiota in infectious diseases, insufficient data exist regarding respiratory microbiota imbalances in the lower respiratory tracts (LRTs) of children with Mycoplasma pneumoniae pneumonia (MPP). Here, we analysed the microbial community using 16S rRNA gene sequencing. Finally, bronchoalveolar lavage fluid (BALF) samples from 158 children with MPP and 29 with bacterial or viral pneumonia (control group) were collected. The diversity of the microbial community was significantly different between the two groups. A significantly increased abundance of Tenericutes and Mycoplasma was detected in the MPP group, exceeding 67% and 65% of the total bacterial population, respectively. Using Mycoplasma abundance as the diagnostic method, the sensitivity and specificity of the model was 97.5% and 96.6%, respectively. Compared to the mild MPP group, lower alpha diversity and significantly increased Mycoplasma abundance were found in the severe MPP group (P < 0.01). The abundance of Mycoplasma was positively correlated with complications and clinical indices in children with severe MPP compared with children with mild MPP. Our study describes the features of the LRT microbiota of children with MPP and uncovered its association with disease severity. This finding may offer insights into the pathogenesis of MPP in children.
Assuntos
Microbiota , Pneumonia por Mycoplasma , Humanos , Criança , Mycoplasma pneumoniae/genética , RNA Ribossômico 16S/genética , Pneumonia por Mycoplasma/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologiaRESUMO
The medaka (Oryzias latipes) is an excellent vertebrate model for studying the development of the retina. Its genome database is complete, and the number of opsin genes is relatively small compared to zebrafish. Short wavelength sensitive 2 (sws2), a G-protein-coupled receptor expressed in the retina, has been lost in mammals, but its role in eye development in fish is still poorly understood. In this study, we established a sws2a and sws2b knockout medaka model by CRISPR/Cas9 technology. We discovered that medaka sws2a and sws2b are mainly expressed in the eyes and may be regulated by growth differentiation factor 6a (gdf6a). Compared with the WT, sws2a-/- and sws2b-/- mutant larvae displayed an increase in swimming speed during the changes from light to dark. We also observed that sws2a-/- and sws2b-/- larvae both swam faster than WT in the first 10 s of the 2 min light period. The enhanced vision-guided behavior in sws2a-/- and sws2b-/- medaka larvae may be related to the upregulation of phototransduction-related genes. Additionally, we also found that sws2b affects the expression of eye development genes, while sws2a is unaffected. Together, these findings indicate that sws2a and sws2b knockouts increase vision-guided behavior and phototransduction, but on the other hand, sws2b plays an important role in regulating eye development genes. This study provides data for further understanding of the role of sws2a and sws2b in medaka retina development.
Assuntos
Oryzias , Animais , Oryzias/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Opsinas/genética , Opsinas de Bastonetes/genética , Retina/metabolismo , Mamíferos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Fator 6 de Diferenciação de CrescimentoRESUMO
Introduction: Accurate and accessible predictors of chronic postsurgical pain (CPSP) to identify high-risk postsurgical patients are prerequisite for preventive and interventional strategies. We investigated the incidence and risk factors of CPSP after abdominal surgery, with a focus on plasma immunological markers. Materials and methods: This was a retrospective analysis of patients who underwent abdominal surgery under general anesthesia at a tertiary center between January 2021 and January 2022. The preoperative demographics, laboratory test data, and surgical factors of the participants were collected from the electronic medical record system. Postoperative pain intensity and living conditions at 1 year after discharge from the hospital were assessed via a phone survey. Univariate and multivariate analyses were used to explore independent risk factors associated with CPSP. Results: A total of 968 patients were included, and 13.53% (n = 131 of 968) of patients reported CPSP 1 year after surgery. Patients with older age, open surgery, higher American Association of Anesthesiologists classification, patient-controlled intravenous analgesia application, longer surgery duration, higher postoperative absolute neutrophil count, and neutrophil-lymphocyte ratio (NLR), lower postoperative absolute lymphocyte count, and higher white blood cell count, were more likely to suffer from CPSP. A changed ratio of NLR (postoperative to preoperative) ≥ 5 significantly correlated with CPSP, moderate to severe pain, maximum numeric rating score since discharge from the hospital, and affected quality of life. Discussion: The changed ratio of NLR could be used for the early identification of patients at risk for CPSP and affect the quality of life to alert the clinician to undertake further assessment.
Assuntos
Dor Crônica , Qualidade de Vida , Humanos , Estudos Retrospectivos , Neutrófilos , Dor Crônica/etiologia , Dor Crônica/complicações , Estudos Prospectivos , Estudos de Coortes , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/epidemiologia , Dor Pós-Operatória/etiologia , Linfócitos , BiomarcadoresRESUMO
Objective: Acute lung injury (ALI) is a common complication of critical diseases with high morbidity and mortality. This study explored the regulatory role and mechanism of high mobility histone box 1 protein (HMGB1) on pulmonary fibrosis (PF) after ALI in rats through nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome. Methods: PF rat models after ALI were established by induction of bleomycin. Degree of fibrosis was assessed by Masson staining and Ashcroft scoring. Hydroxyproline (Hyp) contents in lung tissues and rat lung tissue morphology were detected by enzyme-linked-immunosorbent serologic assay (ELISA) and hematoxylin and eosin staining. The levels of NLRP3, major proteins of NLRP3 inflammasome (NLRP3/ASC/caspase-1), and downstream inflammatory cytokines interleukin (IL)-1 and IL-18 were determined using immunohistochemistry, Western blotting analysis, and ELISA. The nuclear/cytoplasmic nuclear factor erythroid 2-related factor 2 (Nrf2) levels and HO-1 levels were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting analysis. Rats was injected with lentivirus carrying short hairpin (sh)-HMGB1 and zinc protoporphyria (ZNPP) (HO-1 inhibitor) to assess the effects of HMGB1 and HO-1 on PF and NLRP3 inflammasome activation. Results: Bleomycin induced PF after ALI in rats, manifested as patchy fibrosis, atelectasis, and excessive expansion, and increased Aschcroft score and Hyp content. Bleomycin treatment enhanced levels of NLRP3, ASC, caspase-1, IL-1, and IL-18 in rat lung tissues, which promoted activation of NLRP3 inflammasome. HMGB1 was up-regulated in bleomycin-induced rats. HMGB1 knockdown partially reversed NLRP3 inflammasome activation and PF progression (AU)
Assuntos
Humanos , Masculino , Ratos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Proteína HMGB1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Lesão Pulmonar Aguda , Modelos Animais de Doenças , Ratos Wistar , BleomicinaRESUMO
Developing oral nanomedicines that suppress intestinal inflammation while modulating gut microbiota and brain interactions is essential for effectively treating inflammatory bowel disease. Here, we report an oral polyphenol-armored nanomedicine based on tumor necrosis factor-α (TNF-α)-small interfering RNA and gallic acid-mediated graphene quantum dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tannin acid (CHI/TA) multilayer. Referred to "armor," the CHI/TA multilayer resists the harsh environment of the gastrointestinal tract and adheres to inflamed colon sites in a targeted manner. TA provides antioxidative stress and prebiotic activities that modulate the diverse gut microbiota. Moreover, GAGQD protected TNF-α-siRNA delivery. Unexpectedly, the armored nanomedicine suppressed hyperactive immune responses and modulated bacterial gut microbiota homeostasis in a mouse model of acute colitis. Notably, the armored nanomedicine alleviated anxiety- and depression-like behaviors and cognitive impairment in mice with colitis. This armor strategy sheds light on the effect of oral nanomedicines on bacterial gut microbiome-brain interactions.
Assuntos
Colite , Microbioma Gastrointestinal , Camundongos , Animais , Polifenóis/farmacologia , Nanomedicina , Fator de Necrose Tumoral alfa/genética , Colite/tratamento farmacológico , Encéfalo/patologia , Bactérias , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
Three new cyanide-bridged compounds {[Mn((S,S)-Dpen)]3[Mn((S,S)-Dpen)(H2O)][Mo(CN)7]2·4H2O·4C2H3N}n (1-SS), {[Mn((R,R)-Dpen)]3[Mn((R,R)-Dpen)(H2O)][Mo(CN)7]2·4.5H2O·4C2H3N}n (1-RR), and {[Mn(Chxn)][Mn(Chxn)(H2O)0.8][Mo(CN)7]·H2O·4C2H3N}n (2) (SS/RR-Dpen = (S,S)/(R,R)-1,2-diphenylethylenediamine and Chxn = 1,2-cyclohexanediamine) have been successfully synthesized from the self-assembly reaction of the [MoIII(CN)7]4- unit, the MnII ions, and two chiral bidentate chelating ligands. Single-crystal structure determinations show that compounds 1-SS and 1-RR containing ligands SS/RR-Dpen are enantiomers and crystallize in the chiral space group P21. On the other hand, compound 2 crystallizes in the achiral centrosymmetric space group P1Ì due to the racemization of the SS/RR-Chxn ligands during the growth of the crystals. Despite their different space groups and ligands, all three compounds exhibit similar framework structures consisting of cyano-bridged MnII-MoIII two-dimensional layers separated by the bidentate ligands. The circular dichroism (CD) spectra have further demonstrated the enantiopure character of compounds 1-SS and 1-RR. Magnetic measurements revealed that all three compounds display ferrimagnetic ordering with similar critical temperatures of about 40 K. The chiral enantiomers 1-SS and 1-RR exhibit the magnetic hysteresis loop with a coercive field of about 8000 Oe at 2 K, which is by far the highest for all known MnII-[MoIII(CN)7]4- magnets. Analyses of their structures and magnetic properties indicated that their magnetic properties depend on the anisotropic magnetic interactions between the MnII and MoIII centers, which are closely related to the C-N-M bond angles.
RESUMO
The impact of nanoplastics (NPs) on human health is still not well understood, and more research is needed to better understand the risks associated with these particles. In this study, we found that oral administration of polyethylene (PE) NPs in a mice model significantly disrupted the intestinal microenvironment, which shapes adaptive immune response and favors the established in situ colorectal tumor growth. Using single-cell RNA sequencing technology, we show that NPs triggered colon IL-1ß-producing macrophages by inducing lysosome damage, leading to colonic Treg and Th17 differentiation associated with T cell exhaustion, which creates a colon environment that favors the tumor initiation and progress. A similar effect is also observed in polystyrene NPs. Our result provides insight into the potential link between NPs ingestion and colon tumorigenesis, and the urgency of addressing plastic pollution worldwide.
Assuntos
Colo , Microplásticos , Humanos , Animais , Camundongos , Intestinos , Imunidade Adaptativa , Macrófagos , PoliestirenosRESUMO
BACKGROUND: Our study examined the association between the initial systemic inflammation response index (SIRI) and respiratory failure in patients with Guillain-Barré syndrome (GBS). METHODS: The weighted linear regression model, weighted chi-square test, logistic regression models, smooth curve fittings, and the two-piece linear regression model were utilized for data analysis. RESULTS: Among the 443 GBS patients, 75 (6.9%) had experienced respiratory failure. According to logistic regression models, there existed no consistent linear relationship between respiratory failure and SIRI in model 1 (OR = 1.2, p < 0.001), model 2 (OR = 1.2, p < 0.001), and model 3 (OR = 1.3, p = 0.017). However, smooth curve fittings found an S-like curve relationship between SIRI and respiratory failure. Furthermore, when SIRI was < 6.4, there existed a positive correlation between SIRI and respiratory failure in model 1 (OR = 1.5, 95% CI = (1.3, 1.8), p < 0.0001), higher correlation in model 2 (OR = 1.6, 95% CI = (1.3, 1.8), p < 0.0001), and highest correlation in model 3 (OR = 1.6, 95% CI = (1.3, 2.5), p < 0.0001). CONCLUSIONS: SIRI can be used as a predictor of respiratory failure in GBS, and an S-like relationship exists between SIRI and respiratory failure at an infliction point of 6.4. When the SIRI was less than 6.4 and increased, SIRI was associated with a higher occurrence of respiratory failure. The risk of respiratory failure was no longer increased when the SIRI was over 6.4.
RESUMO
Background: We aimed to explore the risk factors of lung nodules and lung cancer in physical examination population with low-dose multi-slice spiral CT (LDCT) screening, to provide basis for lung cancer screening and follow-up management after CT examination. Methods: The general data, serum tumor markers and CT images of 2,274 patients underwent LDCT in the Physical Examination Center of the Fourth Hospital of Hebei Medical University, China in 2019 were retrospectively analyzed and followed up for three years. Results: The detection rate of lung nodules was 48.42%. The detection rate of lung nodules was higher in females, those over 70, those with history of smoking, passive smoking, drinking, precious history of lung diseases and family history of malignant tumors, with statistically significant differences (P<0.05). The abnormal rate of serum tumor markers (CA199, CA125 female and CYFRA211) were higher than that in the non-nodule group, with statistically significant differences (P<0.05). Multivariate logistic regression analysis showed that gender, age, history of smoking, passive smoking, family history of malignant tumors and serum tumor markers (CYFRA211 and CA199) were independent risk factors for the occurrence of lung nodules. Conclusion: Gender female, age>35, history of smoking, passive smoking, history of drinking, history of past lung disease, family history of malignant tumors, abnormal CYFRA211 tumor markers were detected and low dose multi-slice spiral CT image showed ground-glass nodules are risk factors for lung nodules and lung cancer, which should be paid close attention to during physical examination and follow-up.
RESUMO
Nanoplastics (NPs) as contaminants in food and water have drawn increasing public attention. However, little is known about how NPs shape the gut immune landscape after injection. In this study, we fabricate NPs (â¼500 nm) and microplastics (MPs) (â¼2 µm) and evaluate their in vivo effects by feeding them to mice. The results suggest that NPs show a better ability to induce gut macrophage activation than MPs. In addition, NPs trigger gut interleukin-1 (IL-1)-producing macrophage reprogramming via inducing lysosomal damage. More importantly, IL-1 signaling from the intestine can affect brain immunity, leading to microglial activation and Th17 differentiation, all of which correlates with a decline in cognitive and short-term memory in NP-fed mice. Thus, this study provides insight into the mechanism of action of the gut-brain axis, delineates the way NPs reduce brain function, and highlights the importance of fixing the plastic pollution problem worldwide.
RESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS: We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS: We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS: Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.
RESUMO
BACKGROUND: Low density lipoprotein receptor-related protein 11 (LRP11) was involved in the progression of several tumors. However, its role in cervical cancer still remains uncertain. METHODS: The original tumor data was downloaded from the Cancer Genome Atlas and genotype-tissue expression databases. The expression of LRP11 in normal tissues, tumor tissues and adjacent tissues were evaluated. In addition, we also explored the genetic alteration, prognostic value, and gene function of LRP11. We deeply assessed the interaction between LRP11 and tumor immunity at the pan-cancer level. Finally, research on the association between LRP11 and the resistance of anti-tumor drugs was carried out. RESULTS: LRP11 was highly expressed and played a risk prognostic factor in cervical cancer and a variety of tumors. Enrichment analysis revealed that LRP11 was involved in multiple tumor malignant pathways. Our research also pointed out the unique role between LRP11 and tumor immune microenvironment. The tumor immune microenvironment of patients with high expression of LRP11 are lack of most immune cells, indicating a immune desert tumor microenvironment. The final drug resistant analysis suggested that patients with high expression of LRP11 may be related to the resistance of many anti-tumor drugs. CONCLUSION: LRP11 was a potential oncogene and prognostic marker in cervical cancer and pan-cancer. Patients with high LRP11 expression may have immune desert tumor microenvironment.
Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Oncogenes , Bases de Dados Factuais , Mutação , Fatores de Risco , Microambiente Tumoral/genéticaRESUMO
Objectives: Patients with essential tremor (ET) syndrome have more prevalent and more serious gait and balance impairments than healthy controls. In this cross-sectional study, we explored whether balance impairments are associated with falls as well as more pronounced non-motor symptoms in patients with ET syndrome. Methods: We assessed the tandem gait (TG) test, as well as falls or near-falls that occurred over the previous year. Non-motor symptoms-including cognitive deficits, psychological and sleep disorders-were evaluated. In univariate analyses, statistical significance was corrected for multiple comparisons using the Benjamini-Hochberg method. Multiple logistic regression was utilized to evaluate the risk factors of poor TG performance in patients with ET syndrome. Results: A total of 358 patients with ET syndrome were divided into the abnormal TG (a-TG) and normal TG (n-TG) groups based on their performances in the TG test. We revealed that 47.2% of patients with ET syndrome had a-TG. The patients with a-TG were older, were more likely female, and were more likely present with cranial tremors and falls or near-falls (all adjusted P < 0.01). The patients with a-TG had significantly lower Mini-Mental Status Examination scores, as well as significantly higher Hamilton Depression/Anxiety Rating Scale and Pittsburgh Sleep Quality Index scores. Multiple logistic regression analysis demonstrated that female sex (OR 1.913, 95% CI: 1.180-3.103), age (OR 1.050, 95% CI: 1.032-1.068), cranial tremor scores (OR 1.299, 95% CI: 1.095-1.542), a history of falls or near-falls (OR 2.952, 95% CI: 1.558-5.594), and the presence of depressive symptoms (OR 1.679, 95% CI: 1.034-2.726) were associated with the occurrence of a-TG in patients with ET syndrome. Conclusion: TG abnormalities may be a predictor of fall risk in patients with ET syndrome and are associated with non-motor symptoms, especially depression.