Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.826
Filtrar
1.
Chem Commun (Camb) ; 57(74): 9442-9445, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528971

RESUMO

Herein, carbonized nickel metal organic framework scaffolds at nickel foam (CNS@NF) were fabricated to regulate Li-ion plating/stripping in lithium cells. CNS@NF would contribute to uniform Li nucleation and low overpotential due to the small lattice mismatch ratio and homogenous lithiophilic sites. Moreover, the spongy structure of the carbonized MOF can reduce the local current density by smoothening the sharp edges of NiO. Owing to these advantages, both the symmetric cells and full cells exhibited excellent electrochemical performance.

2.
Front Public Health ; 9: 724239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513791

RESUMO

Objective: To examine whether exposure of mouse bone marrow stromal cells (BMSC) to 900 MHz radiofrequency fields used in mobile communication devices can induce mitochondrial unfolded protein response (UPRmt). Methods: BMSCs were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 µW/cm2 power intensity for 4 h/d for 5 consecutive days. Cells in sham group (SH) were cultured in RF exposure system, but without RF radiation. The positive control cells were irradiated with 6 Gy X-ray at a dose rate of 1.103 Gy/min (XR). To inhibit the upstream molecular JNK2 of UPRmt, cells in siRNA + RF, and siRNA + XR group were also pretreated with 100 nM siRNA-JNK2 for 48 h before RF/XR exposure. Thirty minutes, 4 h, and 24 h post-RF/XR exposure, cells were collected, the level of ROS was measured with flow cytometry, the expression levels of UPRmt-related proteins were detected using western blot analysis. Results: Compared with Sham group, the level of ROS in RF and XR group was significantly increased 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of ROS level reversed 24 h post-RF/XR exposure. Compared with Sham group, the expression levels of HSP10/HSP60/ClpP proteins in cells of RF and XR group increased significantly 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of HSP10/HSP60/ClpP protein levels reversed 24 h post-RF exposure. After interfering with siRNA-JNK2, the RF/XR exposures could not induce the increase of HSP10/HSP60/ClpP protein levels any more. Conclusions: The exposure of 900 MHz RF at 120 µW/cm2 power flux density could increase ROS level and activate a transient UPRmt in BMSC cells. Mitochondrial homeostasis in term of protein folding ability is restored 24 h post-RF exposure. Exposure to RF in our experimental condition did not cause permanent and severe mitochondrial dysfunctions. However, the detailed underlying molecular mechanism of RF-induced UPRmt remains to be further studied.

3.
Mol Plant Pathol ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519407

RESUMO

Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.

4.
JAMA ; 326(10): 916-925, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519801

RESUMO

Importance: Standard first-line therapy for advanced or metastatic esophageal carcinoma is chemotherapy, but the prognosis remains poor. Camrelizumab (an anti-programmed death receptor 1 [PD-1] antibody) showed antitumor activity in previously treated advanced or metastatic esophageal squamous cell carcinoma. Objective: To evaluate the efficacy and adverse events of camrelizumab plus chemotherapy vs placebo plus chemotherapy as a first-line treatment in advanced or metastatic esophageal squamous cell carcinoma. Design, Setting, and Participants: This randomized, double-blind, placebo-controlled, multicenter, phase 3 trial (ESCORT-1st study) enrolled patients from 60 hospitals in China between December 3, 2018, and May 12, 2020 (final follow-up, October 30, 2020). A total of 751 patients were screened and 596 eligible patients with untreated advanced or metastatic esophageal squamous cell carcinoma were randomized. Interventions: Patients were randomized 1:1 to receive either camrelizumab 200 mg (n = 298) or placebo (n = 298), combined with up to 6 cycles of paclitaxel (175 mg/m2) and cisplatin (75 mg/m2). All treatments were given intravenously every 3 weeks. Main Outcomes and Measures: Coprimary end points were overall survival (significance threshold, 1-sided P < .02) and progression-free survival (significance threshold, 1-sided P < .005). Results: Of the 596 patients randomized (median age, 62 years [interquartile range, 56-67 years]; 523 men [87.8%]), 1 patient in the placebo-chemotherapy group did not receive planned treatment. A total of 490 patients (82.2%) had discontinued the study treatment. The median follow-up was 10.8 months. The overall survival for the camrelizumab-chemotherapy group was a median of 15.3 months (95% CI, 12.8-17.3; 135 deaths) vs a median of 12.0 months (95% CI, 11.0-13.3; 174 deaths) for the placebo-chemotherapy group (hazard ratio [HR] for death, 0.70 [95% CI, 0.56-0.88]; 1-sided P = .001). Progression-free survival for camrelizumab plus chemotherapy was a median of 6.9 months (95% CI, 5.8-7.4; 199 progression or deaths) vs 5.6 months (95% CI, 5.5-5.7; 229 progression or deaths) for the placebo-chemotherapy group (HR for progression or death, 0.56 [95% CI, 0.46-0.68]; 1-sided P < .001). Treatment-related adverse events of grade 3 or higher occurred in 189 patients (63.4%) in the camrelizumab-chemotherapy group and 201 (67.7%) in the placebo-chemotherapy group, including treatment-related deaths among 9 patients (3.0%) and 11 patients (3.7%), respectively. Conclusions and Relevance: Among patients with advanced or metastatic esophageal squamous cell carcinoma, the addition of camrelizumab to chemotherapy, compared with placebo and chemotherapy, significantly improved overall survival and progression-free survival. Trial Registration: ClinicalTrials.gov Identifier: NCT03691090.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34486792

RESUMO

In this study, a bioactive composite material based on calcium sulfate hemihydrate (CSH) bone cement was studied, which use calcium sulfate dihydrate (CSD) as coagulant and silk fibroin nanofibers (SFF) solution as the curing liquid, further loaded vancomycin silk fibroin microspheres (SFM/VCM). The drug release effect of bone cements caused by tuning weight content of SFM/VCM (0.5, 1, 2%) and the concentration of silk fibroin solution (SFS) (20, 60, 100 mg/mL) used for preparation of SFM was studied in this article. Scanning electron microscope (SEM) demonstrated that the average diameter of microspheres gradually increased and the setting time was prolonged with the concentration of SFS increasing. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were used to analyze the composition of composite materials. The result of compressive strength revealed that the composites contained 0.5% SFM/VCM showed better mechanical performance independent on the concentration of microspheres and the cumulative drug release percentage of all composites were less than 55% after 4 weeks. The drug-loading bone cement possesses not only injectability but also sustained release capability which has a promising prospect in the field of bone substitute material.

6.
Gut ; 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489309

RESUMO

OBJECTIVE: Circulating tumour DNA (ctDNA) sequencing is increasingly used in the clinical management of patients with colorectal cancer. However, the genomic heterogeneity in ctDNA during treatments and its impact on clinical outcomes remain largely unknown. DESIGN: We conducted a prospective cohort study (NCT04228614) of 171 patients with unresectable metastatic colorectal cancer (mCRC) who underwent first-line treatment and prospectively collected blood samples with or without tumour samples from patients at baseline and sequentially until disease progression or last follow-up. RESULTS: The RAS/BRAF alterations in paired baseline tissue and plasma samples from 63 patients displayed a favourable concordance (81.0%, 51/63). After a period of first-line treatment (median time between baseline and last liquid biopsy, 4.67 months), 42.6% (26/61) of RAS-mutant patients showed RAS clearance and 50.0% (5/10) of BRAF-mutant patients showed BRAF clearance, while 3.6% (3/84) and 0.7% (1/135) of patients showed new RAS or BRAF mutations in ctDNA. Patients with plasma RAS/BRAF clearance showed similar progression-free survival (PFS) and overall survival (OS) with patients who remained RAS/BRAF wild-type, while much better outcomes than those who remained RAS/BRAF mutant. Patients who gained new RAS/BRAF mutations showed similar prognosis as those who maintained RAS/BRAF mutations, and shorter PFS and OS than those who remained RAS/BRAF wild-type. CONCLUSION: This prospective, serial and large-scale ctDNA profiling study reveals the temporal heterogeneity of mCRC-related somatic variants, which should be given special attention in clinical practice, as evidenced by the finding that the shift in plasma RAS/BRAF mutational status can yield a drastic change in survival outcomes.

7.
Neurosci Bull ; 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491535

RESUMO

Drug-associated reward memories are conducive to intense craving and often trigger relapse. Simvastatin has been shown to regulate lipids that are involved in memory formation but its influence on other cognitive processes is elusive. Here, we used a mass spectrometry-based lipidomic method to evaluate the impact of simvastatin on the mouse brain in a cocaine-induced reinstatement paradigm. We found that simvastatin blocked the reinstatement of cocaine-induced conditioned place preference (CPP) without affecting CPP acquisition. Specifically, only simvastatin administered during extinction prevented cocaine-primed reinstatement. Global lipidome analysis showed that the nucleus accumbens was the region with the greatest degree of change caused by simvastatin. The metabolism of fatty-acids, phospholipids, and triacylglycerol was profoundly affected. Simvastatin reversed most of the effects on phospholipids induced by cocaine. The correlation matrix showed that cocaine and simvastatin significantly reshaped the lipid metabolic pathways in specific brain regions. Furthermore, simvastatin almost reversed all changes in the fatty acyl profile and unsaturation caused by cocaine. In summary, pre-extinction treatment with simvastatin facilitates cocaine extinction and prevents cocaine relapse with brain lipidome remodeling.

8.
Acta Pharmacol Sin ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34522005

RESUMO

Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.

9.
Ultrasonics ; 118: 106567, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34521035

RESUMO

The quality inspection of micro solder joints in laser spot welding (LSW) is a problem of great concern in industrial application. In this paper, a laser ultrasonic technology (LUT) was proposed to inspect the quality of micro solder joints in LSW. Firstly, based on the thermoelastic model of acoustic wave propagation in solid, a theoretical model was built and used to analyze the propagation properties of the Lamb wave in the whole field by finite element method (FEM), the transmitting properties of the excited Lamb wave via solder joint were affected by the effective contacted area of solder joint. Secondly, LUT was used to inspect the 1.2 mm/0.4 mm welding spot of standard/false 304 stainless steel welded components. By comparing the propagating properties of excited ultrasonic wave in different samples with different weld quality, the standard and false welding can be visually distinguished. Finally, a industrial CT was used to check the quality of the samples used in our experiment. Inclusions and pores have been found in the false solder joints, which will reduce the effective contacted area of solder joint, and then affected the propagation of ultrasonic wave. By combining the CT results and the experimental analysis, the experimental results detected by LUT are in good agreement with the simulation results. So, the LUT is a potential method in field of the quality inspection of micro solder joints in LSW.

10.
Biosens Bioelectron ; 194: 113601, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34530372

RESUMO

In this work, a novel electrochemiluminescence (ECL) aptasensor was structured for the detection of four organophosphorus pesticides (OPs). Firstly, multi-walled carbon nanotubes (MWCNTs) were used to create a favorable loading interface for the fixation of tris (2, 2'-bipyridyl) ruthenium (II) (Ru (bpy)32+). At the same time, copper (core)-gold (shell) bimetallic nanoparticles (Cu@Au NPs) were synthesized in the aqueous phase for the sensor construction. Gold nanoparticles (Au NPs) could promote the electrochemiluminescence intensity of Ru (bpy)32+ with high efficiency by catalyzing the oxidation process of tri-n-propylamine (TPrA). Compared with the Au NPs, Cu@Au NPs increased the solid loading of Au NPs by virtue of the large specific surface area of copper nanoparticles (Cu NPs), which could further improve the sensitivity of aptasensor. When OPs were added, the ECL intensity was significantly reduced, and the concentration of OPs could be detected through the ECL intensity. Under the optimum conditions, the aptasensor had a wider dynamic range and ultra-low detection limit for the detection of four pesticides: profenofos, isocarbophos, phorate, and omethoate, and their detection limits were 3 × 10-4 ng/mL, 3 × 10-4 ng/mL, 3 × 10-3 ng/mL, and 3 × 10-2 ng/mL respectively (S/N = 3). The aptasensor had the merits of good stability, reproducibility, and specificity, and had a favorable recovery rate in detecting OPs residues in vegetables. This work provided an effective method for the construction of a simple, rapid, and sensitive biosensor.

11.
Adv Healthc Mater ; : e2100683, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535975

RESUMO

Ferritin internalized into tumor cells is degraded and releases iron ions via ferritinophagy. Iron ions participate in Fenton reaction to produce reactive oxygen species for lipid peroxidation and ferroptosis. Inhibition of indoleamine-2,3-dioxygenase (IDO) decreases tryptophan elimination to induce T cells activation for tumor immunosuppression relief. The active tumor targeting nanoparticles containing ferritin and a pH-sensitive molecular-switch (FPBC@SN) are developed to utilize ferritinophagy-cascade ferroptosis and tumor immunity activation for cancer therapy. FPBC@SN disintegrates in acidic cytoplasm and releases sorafenib (SRF) and IDO inhibitor (NLG919). SRF upregulates nuclear receptor coactivator 4 (NCOA4) to induce ferritin and endogenous iron pool degradation by ferritinophagy, then obtained iron ions participate in the Fenton reaction to produce lipid peroxide (LPO). Meanwhile, SRF blocks glutathione synthesis to downregulate glutathione peroxidase 4 (GPX4) which can scavenge LPO as a different pathway from ferritinophagy to promote ferroptosis in tumor cells. NLG919 inhibits IDO to reduce tryptophan metabolism, so immunity in tumors is aroused to anti-tumor. In vitro and in vivo experiments prove FPBC@SN inhibits tumor cell growth and metastasis, indicating the potential of FPBC@SN for breast cancer therapy based on the combination of ferritinophagy-cascade ferroptosis and tumor immunity activation.

12.
Mil Med Res ; 8(1): 48, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34496967

RESUMO

The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.

13.
Nano Lett ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34472343

RESUMO

Selective amplification of reactive oxygen species (ROS) generation in tumor cells has been recognized as an effective strategy for cancer therapy. However, an abnormal tumor metabolism, especially the mitochondrial glutaminolysis, could promote tumor cells to generate high levels of antioxidants (e.g., glutathione) to evade ROS-induced damage. Here, we developed a tumor-targeted nanoparticle (NP) platform for effective breast cancer therapy via combining inhibition of mitochondrial glutaminolysis and chemodynamic therapy (CDT). This NP platform is composed of bovine serum albumin (BSA), ferrocene, and purpurin. After surface decoration with a tumor-targeting aptamer and then intravenous administration, this NP platform could target tumor cells and release ferrocene to catalyze hydrogen peroxide (H2O2) into the hydroxyl radical (·OH) for CDT. More importantly, purpurin could inhibit mitochondrial glutaminolysis to concurrently prevent the nutrient supply for tumor cells and disrupt intracellular redox homeostasis for enhanced CDT, ultimately leading to the combinational inhibition of tumor growth.

14.
BMC Gastroenterol ; 21(1): 305, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332527

RESUMO

BACKGROUND: Gongylonema pulchrum is a zoonotic parasite rarely found in humans. To date, there have been no reports on the carcinogenic properties of G. pulchrum, and there are few reports overall on the relationship between esophageal cancer and parasites. CASE PRESENTATION: This report describes the first case of esophageal gongylonemiasis coexisting with early esophageal cancer. The patient had no high-risk factors for esophageal cancer, such as smoking, flushing after drinking, or tumor history. We speculate the existence of unknown links between esophageal cancer and parasitic infection in this patient. DISCUSSION AND CONCLUSIONS: We report the first case of a human presenting both esophageal G. pulchrum infection and esophageal squamous cell carcinoma with the hope that it may provide evidence for a new hypothesis of tumorigenesis.


Assuntos
Doenças do Esôfago , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Infecções por Spirurida , Spiruroidea , Animais , Humanos
15.
J Chromatogr A ; 1654: 462461, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34438305

RESUMO

The characterization and quality control of natural herbal medicines, such as traditional Chinese medicines (TCMs), is of great significance to ensure their potential efficacy and avoid severe side effects. Thin-layer chromatography (TLC) is a simple and classic approach for examining quality marker of natural products. Nevertheless, it is more difficult to further characterize the compounds adsorbed on the TLC plate. Herein, we reported a simple setup of laser ablation-assisted direct analysis in real-time mass spectrometry (LA-DART-MS), in which the coupling of mass spectrometry information to provide a predominant dimension in the identification of unknown chemical compositions separated on standard TLC plates, and it was applied for rapid characterization of various kinds of natural herbal medicines. The results showed that the introduction of low-cost small laser pointer had significantly improved the desorption process. The system was successfully applied in the analysis of alkaloids, flavonoids, anthraquinones, volatile oils, glycosides, organic acids, and eight different TCMs including Sophorae Flavescentis Radix, Angelicae Sinensis Radix, Acori Tatarinowii Rhizoma, Phellodendri Chinensis Cortex, Picrasmae Ramulus et Folium, Gynura Japonica, Rhei Radix et Rhizoma and Dendrobii Caulis. The obtained limits of detection (LODs) of this method for various types of reference substances were in the range of 4.6-162.2 ng/band on TLC plates. Furthermore, the quality control and identification of different species of Dendrobii Caulis herb was achieved. This study combines the advantages of TLC and ambient mass spectrometry to provide a good choice for the screening and identification of active ingredients and the quality evaluation of botanical samples.

16.
J Hazard Mater ; 422: 126821, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419843

RESUMO

Removal of antimony from wastewater is essential because of its potential harm to the environment and human health. Nano-silica and biogenic iron (oxyhydr)oxides composites (BS-Fe) were prepared by iron oxidizing bacteria (IOB) mediation and the batch adsorption experiments were applied to investigate antimonite (Sb(III)) and antimonate (Sb(V)) removal behaviors. By contrast, the synthetic BS-Fe calcined at 400 â„ƒ (BS-Fe-400) exhibited a large specific surface area (157.353 m2/g). The maximum adsorption capacities of BS-Fe-400 were 102.10 and 337.31 mg/g for Sb(III) and Sb(V), respectively, and experimental data fit well to the Langmuir isotherm and Temkin models, and followed the pseudo-second order kinetic model. Additionally, increasing pH promoted Sb(III) adsorption, while inhibited the adsorption of Sb(V), indicating that electrostatic attraction made a contribution to Sb(V) adsorption. Moreover, different co-existing ions showed different effects on adsorption. Characterization techniques of FTIR and XPS indicated that the main functional groups involved in the adsorption were -OH, C-O, CO, C-C, etc. and Sb(III) and Sb(V) may bind to iron (oxyhydr)oxides via the formation of inner-sphere complexes. The present work revealed that the synthetic BS-Fe-400 by nano-silica and biogenic iron (oxyhydr)oxides held great application potential in antimony removal from wastewater.

17.
Nanotechnology ; 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359059

RESUMO

The strain has been employed for controlled modification of electronical and mechanical properties of two-dimensional (2D) materials. However, the thermal strain-engineered behaviors of the CVD-grown MoS2 have not been systematically explored. Here, we investigated the strain-induced structure and properties of CVD-grown triangular MoS2 flakes by several advanced atomic force microscopy. Two different kinds of flakes with sharp-corner or vein-like nanostructures are experimentally discovered due to the size-dependent strain behaviors. The critical size of these two kinds of flakes can be roughly estimated at ~ 17 m. Within the small flakes, the sharp-corner regions show specific strain-modified properties due to the suffering of large tensile strain. While in the large MoS2 flakes, the complicated vein-like nanoripple structures were formed due to the interface slipping process under the larger tensile strain. Our work not only demonstrates the size-specific strain behaviors of MoS2 flakes but also sheds light on the artificial design and preparation of strain-engineered nanostructures for the devices based on the 2D materials.

18.
Vascular ; : 17085381211036549, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362270

RESUMO

BACKGROUND: Hypertension associated with hyperhomocysteinemia (HHcy) is correlated with a high risk of vascular diseases. Studies found that folic acid (FA) supplementation can reduce the risk of cardiovascular and cerebrovascular events. The aim of the present study was to explore the potential mechanisms of FA attenuating HHcy-related arterial injury in spontaneously hypertensive rats (SHRs). METHODS: 24 SHRs were randomized into the control group, the HHcy group, and the HHcy + FA group (8 per group). The SHRs in the HHcy group and the HHcy + FA group were given DL-Hcy intraperitoneally to mimic hypertension associated with HHcy. The SHRs in the HHcy + FA group were given FA by gavage to mimic an FA-fortified diet. The histopathology and immunohistochemistry of rat aorta and carotid artery were analyzed, and the relative expression levels of immune/inflammation and oxidative stress molecules in arterial tissue were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS: FA significantly reduced the expression levels of nuclear factor-κ-gene binding (NF-κB) p65/Rela and interleukin-6 (IL-6) in rat arterial tissues, as well as the levels of plasma HHcy and serum malondialdehyde (MDA) in hypertension associated with HHcy rats (p < 0.05). At the same time, FA significantly increased the serum superoxide dismutase (SOD) level in hypertension associated with HHcy rats, and even the SOD level of the HHcy + FA group was higher than that of the control group (p < 0.05). However, HHcy induced the opposite results of the above indicators in SHRs compared with the control group (p < 0.05). CONCLUSIONS: The arterial protection mechanisms of FA are related to reducing the concentration of HHcy to eliminate the tissue toxicity of HHcy, inhibiting NF-κBp65/Rela/IL-6 pathway molecules to regulate inflammatory response, and promoting the potential anti-oxidative stress pathway molecules to reduce oxidative stress level.

19.
J Phys Chem Lett ; : 7783-7791, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374551

RESUMO

A positive aging phenomenon, that is, enhancement of the electroluminescence performance at the beginning of electrical aging, is commonly observed for the state-of-the-art perovskite light-emitting diodes (PeLEDs). The origins of positive aging could fundamentally interfere with those of the operational deterioration processes of PeLEDs (namely negative aging), bringing difficulty in analyzing the degradation mechanisms. This work decouples the positive and negative aging processes of PeLEDs by inserting a thin ionic liquid interlayer between the hole-injection layer and the perovskite layer. This interlayer inhibits ions migration by passivating the halogen vacancies of perovskite films and suppresses interfacial exciton quenching, enabling us to decouple the positive and negative aging processes of PeLEDs while increasing the device efficiency. Inserting an ionic liquid interlayer is also demonstrated to be effective for iodide-based PeLEDs and applicable with the use of other ionic liquids. Our work provides an ideal system for fundamental studies on the degradation mechanisms of PeLEDs.

20.
Mol Omics ; 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355227

RESUMO

Metabolomics, especially the large-scale untargeted metabolomics, generates massive amounts of data on a regular basis, which often needs to be filtered, screened, analyzed and annotated via a variety of approaches. Data-dependent-acquisition (DDA) mode including inclusion and exclusion rules for tandem mass spectrometry (MS) is routinely used to perform such analyses. While the parameters of data acquisition are important in these processes, there is a lack of systematic studies on these parameters that can be used in data collection to generate metabolic features for molecular-network (MN) analysis on the Global Natural Products Social Molecular Networking (GNPS) platform. To explore the key parameters that impact the formation and quality of MNs, several data-acquisition parameters for metabolomic studies were proposed in this study. The influences of MS1 resolution, normalized collision energy (NCE), intensity threshold, and exclusion time on GNPS analyses were demonstrated. Moreover, an optimization workflow dedicated to Thermo Scientific QE Hybrid Orbitrap instruments is described, and a comparison of phytochemical contents from two forms of black raspberry extract was performed based on the GNPS MN results. Overall, we expect this study to provide additional thoughts on developing a natural-product-analysis workflow using the GNPS network, and to shed some light on future analyses that utilize similar instrumental setups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...