Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
BMC Bioinformatics ; 25(1): 227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956454

RESUMO

BACKGROUND: Multivariate synchronization index (MSI) has been successfully applied for frequency detection in steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems. However, the standard MSI algorithm and its variants cannot simultaneously take full advantage of the time-local structure and the harmonic components in SSVEP signals, which are both crucial for frequency detection performance. To overcome the limitation, we propose a novel filter bank temporally local MSI (FBTMSI) algorithm to further improve SSVEP frequency detection accuracy. The method explicitly utilizes the temporal information of signal for covariance matrix estimation and employs filter bank decomposition to exploits SSVEP-related harmonic components. RESULTS: We employed the cross-validation strategy on the public Benchmark dataset to optimize the parameters and evaluate the performance of the FBTMSI algorithm. Experimental results show that FBTMSI outperforms the standard MSI, temporally local MSI (TMSI) and filter bank driven MSI (FBMSI) algorithms across multiple experimental settings. In the case of data length of one second, the average accuracy of FBTMSI is 9.85% and 3.15% higher than that of the FBMSI and the TMSI, respectively. CONCLUSIONS: The promising results demonstrate the effectiveness of the FBTMSI algorithm for frequency recognition and show its potential in SSVEP-based BCI applications.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados Visuais/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
2.
J Gastrointest Oncol ; 15(3): 921-930, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989422

RESUMO

Background: Gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs) constitute a rare and aggressive group of malignancies usually with widespread disease. There are limited studies on GEP-NECs, and therefore, we aim to acquire more information on the clinical features, treatment regimens, and prognosis. Methods: Data from advanced GEP-NECs patients who had not previously received systemic treatment for advanced disease at The First Affiliated Hospital of Nanjing Medical University from 2010 to 2022 were retrospectively collected. Relationships between clinical-pathological features, treatment regimens, and prognosis were investigated using Kaplan-Meier curves and cox regression models. Results: A total of fifty-four patients were enrolled in the study. The median age was 65.5 years and 79.6% were male. At diagnosis, 51.9% and 3.7% of patients developed liver and brain metastasis respectively. Sixteen (29.6%) patients received chemotherapy according to primary site of tumor (PST), while thirty-eight (70.4%) were treated with etoposide-platinum (EP) regimen, which based on the first-line treatment of advanced small cell lung cancer (SCLC). No significant differences on progression-free survival (PFS) and response rate were observed between these two groups. Univariate survival analysis showed that liver metastasis, elevated baseline serum carcinoembryonic antigen, elevated baseline serum neuron-specific enolase, elevated baseline serum lactate dehydrogenase, and elevated baseline serum neutrophil-to-lymphocyte ratio (NLR) were associated with shorter PFS. After multivariate analysis, elevated NLR was the only factor that remained significantly associated with shorter PFS (P=0.01). Conclusions: GEP-NECs are aggressive neoplasms, of which elevated NLR is proven to be an independent negative predictor. Treatment regimens based on PST are not inferior to regiments based on SCLC (EP) for GEP-NECs patients. Large-scale, prospective randomized controlled trials are required to establish the standard of care.

3.
Cell Rep ; 43(7): 114454, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38990721

RESUMO

Memory B cells (MBCs) are essential for humoral immunological memory and can emerge during both the pre-germinal center (GC) and GC phases. However, the transcription regulators governing MBC development remain poorly understood. Here, we report that the transcription regulator Notch2 is highly expressed in MBCs and their precursors at the pre-GC stage and required for MBC development without influencing the fate of GC and plasma cells. Mechanistically, Notch2 signaling promotes the expression of complement receptor CD21 and augments B cell receptor (BCR) signaling. Reciprocally, BCR activation up-regulates Notch2 surface expression in activated B cells via a translation-dependent mechanism. Intriguingly, Notch2 is dispensable for GC-derived MBC formation. In summary, our findings establish Notch2 as a pivotal transcription regulator orchestrating MBC development through the reciprocal enforcement of BCR signaling during the pre-GC phase and suggest that the generation of GC-independent and -dependent MBCs is governed by distinct transcriptional mechanisms.

4.
World J Clin Cases ; 12(19): 3791-3799, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994323

RESUMO

BACKGROUND: The incidence and mortality of lung cancer have increased annually. Accurate diagnosis can help improve therapeutic efficacy of interventions and prognosis. Percutaneous lung biopsy is a reliable method for the clinical diagnosis of lung cancer. Ultrasound-guided percutaneous lung biopsy technology has been widely promoted and applied in recent years. AIM: To investigate the diagnostic value of contrast-enhanced ultrasound (CEUS)-guided percutaneous biopsy in peripheral pulmonary lesions. METHODS: We retrospectively collected data on 237 patients with peripheral thoracic focal lesions who underwent puncture biopsy at Wuxi People's Hospital. The patients were randomly divided into two groups: The CEUS-guided before lesion puncture group (contrast group) and conventional ultrasound-guided group (control group). Analyze the diagnostic efficacy of the puncture biopsy, impact of tumor size, and number of puncture needles and complications were analyzed and compared between the two groups. RESULTS: Accurate pathological results were obtained for 92.83% (220/237) of peripheral lung lesions during the first biopsy, with an accuracy rate of 95.8% (113/118) in the contrast group and 89.9% (107/119) in the control group. The difference in the area under the curve (AUC) between the contrast and the control groups was not statistically significant (0.952 vs 0.902, respectively; P > 0.05). However, when the lesion diameter ≥ 5 cm, the diagnostic AUC of the contrast group was higher than that of the control group (0.952 vs 0.902, respectively; P < 0.05). In addition, the average number of puncture needles in the contrast group was lower than that in the control group (2.58 ± 0.53 vs 2.90 ± 0.56, respectively; P < 0.05). CONCLUSION: CEUS guidance can enhance the efficiency of puncture biopsy of peripheral pulmonary lesions, especially for lesions with a diameter ≥ 5 cm. Therefore, CEUS guidance has high clinical diagnostic value in puncture biopsy of peripheral focal lung lesions.

5.
Mutat Res ; 829: 111873, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996537

RESUMO

BACKGROUND: Ferroptosis is an iron-dependent programmed cell death mediated by lipid peroxidation. The purpose was to explore the molecular mechanism by which phosphatidylethanolamine-binding protein 1 (PEBP1) regulates ferroptosis in lung adenocarcinoma (LUAD), hoping to identify novel therapeutic targets for LUAD. METHODS: The expression, enrichment pathways and upstream transcription factors of PEBP1 were analyzed using bioinformatics tools. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) experiments were conducted to validate the interaction and binding relationship between PEBP1 and the upstream transcription factor nuclear transcription factor Y subunit α (NFYA). Quantitative reverse transcription PCR (qRT-PCR) was conducted to measure the expression levels of PEBP1 and NFYA mRNA in LUAD cells. Cell viability was detected by cell counting kit-8 assay. In addition, levels of malondialdehyde (MDA), Fe2+, and lipid reactive oxygen species (ROS) were assessed to evaluate ferroptosis levels in LUAD cells. RESULTS: PEBP1 was downregulated and significantly enriched in the ferroptosis signaling pathway in LUAD. Overexpression of PEBP1 suppressed cell viability remarkably, while levels of MDA, Fe2+, and lipid ROS were increased. Conversely, knockdown of PEBP1 produced the opposite effects. The upstream transcription factor NFYA, predicted to be involved in the regulation of PEBP1, was also upregulated in LUAD. Dual-luciferase reporter assay, ChIP, and molecular experiments revealed that NFYA transcriptionally suppressed the expression of PEBP1, and overexpression of NFYA could reverse the effects caused by PEBP1 overexpression. CONCLUSION: PEBP1 regulated ferroptosis in LUAD, and the transcription factor NFYA inhibited ferroptosis in LUAD cells by transcriptionally downregulating PEBP1 expression.

6.
Allergol Int ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025723

RESUMO

BACKGROUND: Allergic asthma is largely dominated by Th2 lymphocytes. Micropeptides in Th2 cells and asthma remain unmasked. Here, we aimed to demonstrate a micropeptide, T-cell regulatory micropeptide (TREMP), in Th2 cell differentiation in asthma. METHODS: TREMP translated from lincR-PPP2R5C was validated using Western blotting and mass spectrometry. TREMP knockout mice were generated using CRISPR/Cas9. Coimmunoprecipitation revealed that TREMP targeted pyrroline-5-carboxylate reductase 1 (PYCR1), which was further explored in vitro and in vivo. The levels of TREMP and PYCR1 in Th2 cells from clinical samples were determined by flow cytometry. RESULTS: TREMP, encoded by lincR-PPP2R5C, was in the mitochondrion. The lentivirus encoding TREMP promoted Th2 cell differentiation. In contrast, Th2 differentiation was suppressed in TREMP-/- CD4+ T cells. In the HDM-induced model of allergic airway inflammation, TREMP was increased in pulmonary tissues. Allergic airway inflammation was relieved in TREMP-/- mice treated with HDM. Mechanistically, TREMP interacted with PYCR1, which regulated Th2 differentiation via glycolysis. Glycolysis was decreased in Th2 cells from TREMP-/- mice and PYCR1-/- mice. Similar to TREMP-/- mice, allergic airway inflammation was mitigated in HDM-challenged PYCR1-/- mice. Moreover, we measured TREMP and PYCR1 in asthma patients. And we found that, compared with those in healthy controls, the levels of TREMP and PYCR1 in Th2 cells were significantly increased in asthmatic patients. CONCLUSIONS: The micropeptide TREMP encoded by lincR-PPP2R5C promoted Th2 differentiation in allergic airway inflammation by interacting with PYCR1 and enhancing glycolysis. Our findings highlight the importance of neglected micropeptides from noncoding RNAs in allergic diseases.

7.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000747

RESUMO

The characteristics of fiber morphology and paper structure are critical to the barrier properties of food packaging paper. Herein, this study aimed to use pulp fibrillation, paper semi-dry pressing and carboxymethyl starch (CMS) coating to flatten the fibers, which were formed on the paper surface with good barrier properties due to the tight bond between fibers. The results showed that the permeability of paper was reduced by 87.56%, from 81.44 µm/Pa·s to 10.13 µm/Pa·s after the pulp fibrillation treatment (60 °SR). Moreover, semi-dry pressing treatment contributed to decreasing the water vapor transmission coefficient (WVP) by 50.98% to 2.74 × 10-10 g/m·s·Pa, and the oxygen permeation coefficient (OP) decreased by 98.04% to 1.93 × 10-14 cm3·cm/cm2·s·Pa. After coating the paper surface with titanium dioxide (TiO2) and CMS, the WVP of the paper was further reduced to 1.55 × 10-10 g/m·s·Pa, and OP was reduced to 0.19 × 10-14 cm3·cm/cm2·s·Pa. These values were 72.27% and 99.8% lower than those of the original paper, respectively. Therefore, through pulp fibrillation, semi-dry pressing of paper, TiO2 filling, and surface coating with CMS, there is no need to use synthetic polymer surface film-forming agents to achieve the high barrier properties that are required for low water and oxygen molecules permeation in food packaging paper.

8.
Adv Sci (Weinh) ; : e2404419, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018250

RESUMO

Herein, hierarchically structured microgrid frameworks of Co3O4 and carbon composite deposited on reduced graphene oxide (Co3O4@C/rGO) are demonstrated through the three-dimensioinal (3D) printing method, where the porous structure is controllable and the height and width are scalable, for dendrite-free Na metal deposition. The sodiophilicity, facile Na metal deposition kinetics, and NaF-rich solid electrolyte interphase (SEI) formation of cubic Co3O4 phase are confirmed by combined spectroscopic and computational analyses. Moreover, the uniform and reversible Na plating/stripping process on 3D-printed Co3O4@C/rGO host is monitored in real time using in situ transmission electron and optical microscopies. In symmetric cells, the 3D printed Co3O4@C/rGO electrode achieves a long-term stability over 3950 at 1 mA cm-2 and 1 mAh cm-2 with a superior Coulombic efficiency (CE) of 99.87% as well as 120 h even at 20 mA cm-2 and 20 mAh cm-2, far exceeding the previously reported carbon-based hosts for Na metal anodes. Consequently, the full cells of 3D-printed Na@Co3O4@C/rGO anode with 3D-printed Na3V2(PO4)3@C-rGO cathode (≈15.7 mg cm-2) deliver the high specific capacity of 97.97 mAh g-1 after 500 cycles with a high CE of 99.89% at 0.5 C, demonstrating the real operation of flexible Na metal batteries.

9.
Int Immunopharmacol ; 139: 112680, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018689

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. Macrophages release IL-1ß and orchestrate airway inflammation in COPD. Previously, we explored the role of a new lncRNA, LincR-PPP2R5C, in regulating Th2 cells in asthma. Here, we established a murine model of COPD and explored the roles and mechanisms by which LincR-PPP2R5C regulates IL-1ß in macrophages. LincR-PPP2R5C was highly expressed in pulmonary macrophages from COPD-like mice. LincR-PPP2R5C deficiency ameliorated emphysema and pulmonary inflammation, as characterized by reduced IL-1ß in macrophages. Unexpectedly, in both lung tissues and macrophages, LincR-PPP2R5C deficiency decreased the expression of the IL-1ß protein but not the IL-1ß mRNA. Furthermore, we found that LincR-PPP2R5C deficiency increased the level of ubiquitinated IL-1ß in macrophages, which was mediated by PP2A activity. Targeting PP2A with FTY720 decreased IL-1ß and improved COPD. In conclusion, LincR-PPP2R5C regulates IL-1ß ubiquitination by affecting PP2A activity in macrophages, contributing to the airway inflammation and emphysema in a murine model of COPD. PP2A and IL-1ß ubiquitination in macrophages might be new therapeutic avenues for COPD therapy.

10.
J Psycholinguist Res ; 53(4): 60, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980515

RESUMO

In the past, research on the cognitive neural mechanism of second language (L2) learners' processing time information has focused on Indo-European languages. It has also focused on the temporal category expressed by morphological changes. However, there has been a lack of research on L2 learners' various time coding means, especially for Mandarin, which lacks morphological changes. Using event-related potentials (ERPs), we investigated the cognitive neural mechanism of L2 learners with native Indonesian background in processing two time coding means (time adverbs and aspect markers) in Chinese. Indonesian has time adverb encoding time information similar to that of Chinese, but there are no aspect markers similar to Chinese in Indonesian. We measured ERPs time locked to the time adverb " (cengjing)" and the aspect marker "verb + (verb + guo)" in two different conditions, i.e., a control condition (the correct sentence) and a temporal information violation. The experimental results showed that the native speaker group induced the biphasic N400-P600 effect under the condition of time adverb violation, and induced P600 under the condition of the aspect marker "verb + (verb + guo)" violation. Indonesian L2 learners of Chinese only elicited P600 for the violation of time adverbs, and there was no statistically significant N400 similar to that of Chinese native speakers. In the case of aspect marker violation, we observed no significant ERPs component for the Indonesian L2 learners of Chinese. Both groups of subjects induced elicited a widely distributed and sustained negativity on the post-critical words after "verb + (verb + guo)" and "(cengjing)". This showed that the neural mechanism of Indonesian L2 learners of Chinese processing Chinese time coding differs from that of Chinese native speakers.


Assuntos
Eletroencefalografia , Potenciais Evocados , Idioma , Aprendizagem , Multilinguismo , Humanos , Potenciais Evocados/fisiologia , Masculino , Feminino , Adulto Jovem , Adulto , Aprendizagem/fisiologia , Psicolinguística , Indonésia
11.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1379-1387, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886437

RESUMO

The energy oriented mine ecological restoration mode of photovoltaic+ecological restoration provides a breakthrough for alleviating the dilemma of photovoltaic land development and solving the urgent need for restoration of abandoned mining land. Taking a mining area in central Liaoning Province as an example, we established three photovoltaic+mining ecological restoration modes, including forest-photovoltaic complementary, agriculture-photovoltaic, and grass photovoltaic complementation. Combined with the life cycle assessment method, we calculated and assessed the potential of photovoltaic+mining ecological restoration in carbon reduction and sink enhancement. The average annual carbon reduction and sink increase was 514.93 t CO2·hm-2 under the photovoltaic+mining ecological restoration mode, while the average annual carbon reduction per megawatt photovoltaic power station was 1242.94 t CO2. The adoption of photovoltaic+ecological restoration mode in this mining area could make carbon reduction and sink enhancement 6.30-7.79 Mt CO2 during 25 years. The carbon reduction and sink increment mainly stemmed from the photovoltaic clean power generation induced carbon reduction, accounting for 96.4%-99.4%, while the contribution of ecosystem carbon sink increment was small, accounting for only 0.6%-3.7% of the total. Among different photovoltaic+ecological restoration modes, the carbon reduction and sink increment was the largest in forest-photovoltaic complementary (7.11 Mt CO2), followed by agriculture-photovoltaic (7.04 Mt CO2), and the least in grass photovoltaic complementation (6.98 Mt CO2). Constructing the development mode of "photovoltaic+mining ecological restoration" could effectively leverage the dual benefits of reducing emissions from photovoltaic power generation and increase sinks from mining ecological restoration, which would be helpful for achieving the goal of carbon neutrality in China.


Assuntos
Sequestro de Carbono , Ecossistema , Mineração , China , Recuperação e Remediação Ambiental/métodos , Modelos Teóricos , Carbono/química , Carbono/análise , Conservação dos Recursos Naturais/métodos , Dióxido de Carbono/análise , Energia Solar
12.
Biol Trace Elem Res ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888857

RESUMO

Iodine deficiency results in elevated thyroglobulin (Tg) concentrations, with high iodine Tg being more immunogenic than low iodine Tg. The study investigated the correlation between serum iodine concentration and thyroglobulin autoantibody (TgAb) levels across diverse iodine nutritional statuses as determined by urine iodine concentration (UIC). Demographic information was collected from 1,482 participants through a questionnaire. Blood and spot urine were collected to measure thyroid-stimulating hormone (TSH), TgAb, thyroid anti-peroxidase antibody (TPOAb), serum iodine (SIC), serum non-protein-bound iodine (snPBI), urine iodine (UIC), creatinine (UCr). The median UIC and SIC were 146.5 µg/L and 74.9 µg/L, respectively. A linear relationship was observed between SIC, snPBI, and serum-protein-bound iodine (sPBI) (P < 0.001). The 90% reference intervals for SIC, snPBI, and sPBI were 50.7-120.7 µg/L, 21.9-52.9 µg/L, and 19.7-77.9 µg/L, respectively. The prevalence of elevated TgAb levels was significantly higher in women than in men (P < 0.001). Both low and high levels of snPBI and sPBI were associated with an increased risk of elevated TgAb levels. In women, the risk of positive TgAb in the group below the reference value of snPBI (OR = 2.079, 95%CI: 1.166, 3.705) and sPBI (OR = 2.578, 95%CI: 1.419, 4.684) was higher. In men, the risk of positive TgAb in the group below the reference value of SIC was higher (OR = 3.395, 95%CI: 1.286, 8.962). Iodine might exert an influence on TgAb levels through its binding to proteins, primarily Tg, thereby altering the iodine content of Tg. The interplay of gender factors further enhanced the risk of TgAb emergence.

13.
Cells ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891020

RESUMO

Improving the drought resistance of rice is of great significance for expanding the planting area and improving the stable yield of rice. In our previous work, we found that ROLLED AND ERECT LEAF1 (REL1) protein promoted enhanced tolerance to drought stress by eliminating reactive oxygen species (ROS) levels and triggering the abscisic acid (ABA) response. However, the mechanism through which REL1 regulates drought tolerance by removing ROS is unclear. In this study, we identified REL1 interacting protein 5 (RIP5) and found that it directly combines with REL1 in the chloroplast. We found that RIP5 was strongly expressed in ZH11 under drought-stress conditions, and that the rip5-ko mutants significantly improved the tolerance of rice plants to drought, whereas overexpression of RIP5 resulted in greater susceptibility to drought. Further investigation suggested that RIP5 negatively regulated drought tolerance in rice by decreasing the content of ascorbic acid (AsA), thereby reducing ROS clearance. RNA sequencing showed that the knockout of RIP5 caused differential gene expression that is chiefly associated with ascorbate and aldarate metabolism. Furthermore, multiple experimental results suggest that REL1 is involved in regulating drought tolerance by inhibiting RIP5. Collectively, our findings reveal the importance of the inhibition of RIP5 by REL1 in affecting the rice's response to drought stress. This work not only explains the drought tolerance mechanism of rice, but will also help to improve the drought tolerance of rice.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Espécies Reativas de Oxigênio , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Ácido Abscísico/metabolismo , Cloroplastos/metabolismo , Adaptação Fisiológica/genética , Plantas Geneticamente Modificadas , Ácido Ascórbico/metabolismo , Ligação Proteica , Resistência à Seca
14.
Int J Biol Macromol ; 272(Pt 1): 132707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825274

RESUMO

Eucommia ulmoides is a temperate gum source plant that produces trans-polyisoprene (TPI), also known as Eucommia rubber. The structural configuration and function of TPI offer a new material with important potential for industrial development. In this study, we detected the TPI content in the leaves of diploid and triploid E. ulmoides plants. The average TPI content in the leaves of triploid E. ulmoides was significantly higher than that of diploid. Transcriptome data and weighted gene co-expression network analyses identified a significant positive correlation between the EuFPS1 gene and TPI content. Overexpression of EuFPS1 increased the density of rubber particles and TPI content, indicating its crucial role in TPI biosynthesis. In addition, the expression of EuHDZ25 in E. ulmoides was significantly positively correlated with EuFPS1 expression. Yeast one-hybrid and dual-luciferase assays demonstrated that EuHDZ25 mainly promotes TPI biosynthesis through positive regulation of EuFPS1 expression. The significantly up-regulated expression of EuHDZ25 and its consequent upregulation of EuFPS1 during the biosynthesis of TPI may partially explain the increased TPI content of triploids. This study provides an important theoretical foundation for further exploring the molecular mechanism of secondary metabolites content variation in polyploids and can help to promote the development and utilization of rubber resources.


Assuntos
Eucommiaceae , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Borracha , Eucommiaceae/genética , Eucommiaceae/metabolismo , Eucommiaceae/química , Borracha/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hemiterpenos/biossíntese , Hemiterpenos/metabolismo
15.
Signal Transduct Target Ther ; 9(1): 148, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890298

RESUMO

Penpulimab is an anti-programmed cell death-1 (PD-1) IgG1 antibody with no Fc gamma receptor (FcγR) binding activity, and thus theoretically reduced immune-related adverse events (irAEs) while maintaining efficacy. This single-arm, phase II trial conducted across 20 tertiary care centers in China enrolled adult patients with metastatic nasopharyngeal carcinoma (NPC) who had failed two or more lines of previous systemic chemotherapy. Patients received 200-mg penpulimab intravenously every 2 weeks (4 weeks per cycle) until disease progression or intolerable toxicities. The primary endpoint was objective response rate (ORR) per RECIST (version 1.1), as assessed by an independent radiological review committee. The secondary endpoints included progression-free survival (PFS) and overall survival (OS). One hundred thirty patients were enrolled and 125 were efficacy evaluable. At the data cutoff date (September 28, 2022), 1 patient achieved complete response and 34 patients attained partial response. The ORR was 28.0% (95% CI 20.3-36.7%). The response was durable, with 66.8% still in response at 9 months. Thirty-three patients (26.4%) were still on treatment. The median PFS and OS were 3.6 months (95% CI = 1.9-7.3 months) and 22.8 months (95% CI = 17.1 months to not reached), respectively. Ten (7.6%) patients experienced grade 3 or higher irAEs. Penpulimab has promising anti-tumor activities and acceptable toxicities in heavily pretreated metastatic NPC patients, supporting further clinical development as third-line treatment of metastatic NPC.


Assuntos
Carcinoma Nasofaríngeo , Metástase Neoplásica , Receptor de Morte Celular Programada 1 , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Adulto , Idoso , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos
16.
Int J Radiat Oncol Biol Phys ; 119(3): 1026, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851260
17.
Environ Pollut ; 357: 124402, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906405

RESUMO

Excess nitrogen and phosphorus inputs are the main causes of aquatic environmental deterioration. Accurately quantifying and dynamically assessing the regional nitrogen and phosphorus pollution emission (NPPE) loads and influencing factors is crucial for local authorities to implement and formulate refined pollution reduction management strategies. In this study, we constructed a methodological framework for evaluating the spatio-temporal evolution mechanism and dynamic simulation of NPPE. We investigated the spatio-temporal evolution mechanism and influencing factors of NPPE in the Yangtze River Economic Belt (YREB) of China through the pollution load accounting model, spatial correlation analysis model, geographical detector model, back propagation neural network model, and trend analysis model. The results show that the NPPE inputs in the YREB exhibit a general trend of first rising and then falling, with uneven development among various cities in each province. Nonpoint sources are the largest source of land-based NPPE. Overall, positive spatial clustering of NPPE is observed in the cities of the YREB, and there is a certain enhancement in clustering. The GDP of the primary industry and cultivated area are important human activity factors affecting the spatial distribution of NPPE, with economic factors exerting the greatest influence on the NPPE. In the future, the change in NPPE in the YREB at the provincial level is slight, while the nitrogen pollution emissions at the municipal level will develop towards a polarization trend. Most cities in the middle and lower reaches of the YREB in 2035 will exhibit medium to high emissions. This study provides a scientific basis for the control of regional NPPE, and it is necessary to strengthen cooperation and coordination among cities in the future, jointly improve the nitrogen and phosphorus pollution tracing and control management system, and achieve regional sustainable development.

18.
Int J Biol Macromol ; 273(Pt 2): 132892, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878921

RESUMO

TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.


Assuntos
Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Canais de Potássio de Domínios Poros em Tandem , Concentração de Íons de Hidrogênio , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Humanos , Mutação , Animais
19.
Redox Biol ; 75: 103253, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38936254

RESUMO

GPCR-G protein signaling from endosomes plays a crucial role in various physiological and pathological processes. However, the mechanism by which endosomal G protein signaling is terminated remains largely unknown. In this study, we aimed to investigate the regulatory mechanisms involved in terminating the signaling of Gα subunits from endosomes. Through structural analysis and cell-based assays, we have discovered that SNX25, a protein that targets endosomes via its PXA or PXC domain, interacts with regulator of G protein signaling (RGS) proteins (including RGS2, RGS4, RGS8, and RGS17) in a redox-regulated manner. The interaction between SNX25 and these RGS proteins enhances their GTPase-accelerating activity towards Gαi/q and their ability to bind GDP-bound (inactive form) Gαi/q. As a result, SNX25 recruits these RGS proteins to endosomes, leading to the termination of endosomal Gαi/q signaling. Furthermore, we have found that the SNX25/RGS complex also exerts a negative regulatory effect on Gαi/q signaling from the plasma membrane. This is achieved by recruiting Gαi/q to endosomes and preventing its activation on the plasma membrane. Our findings shed light on the previously unknown role of redox-modulated SNX25 in inhibiting Gαi/q signaling, thereby uncovering a novel mechanism for terminating Gαi/q signaling from endosomes. Importantly, this study expands our understanding of the regulation of GPCR-Gαi/q signaling beyond the plasma membrane.

20.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932051

RESUMO

Lignin is an important component of plant fiber raw materials, and is a three-dimensional network structure aromatic polymer with abundant resources and a complex structure in nature. Lignin is generally used as industrial waste, and its potential value has not been fully utilized. Modern agriculture extensively uses chemical fertilizers, leading to the gradual degradation of soil fertility and structure, which seriously affects crop growth, nutrient transport, and root respiration function. Based on soil bulk density, porosity, aggregates, and their stability indicators, this study analyzed the effects of aminated industrial lignin and its loading with arbuscular mycorrhizal fungi on soil structure improvement and plant growth. It was hoped that resource-rich lignin could play a beneficial role in improving soil structure and promoting crop growth. The phenolic hydroxyl group of lignin was epoxidized and further aminated to load with arbuscular mycorrhizal fungi. The results indicated that amine-modified lignin could effectively load with arbuscular mycorrhizal fungi. The application of arbuscular mycorrhizal fungi-supported aminated lignin to soil aggregate structure improvement greatly reduced the bulk density of soil, and increased the porosity of soil and the content of large granular soil. Compared with unmodified soil, soil bulk density decreased by 73.08%, the porosity of soil increased by 70.43%, and the content of large granular soil increased by 56.38%. Using the improved soil for corn cultivation efficiently increased the biomass of corn. The plant height was increased by 72.16%, the root-shoot ratio was increased by 156.25%, and other indexes were also improved to varying degrees. The experimental method provides an important basis for the effective utilization of lignin materials in agriculture in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA