Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.817
Filtrar
1.
Food Chem ; 336: 127713, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32768909

RESUMO

The presence of multiple mycotoxins in the agricultural products poses a serious threat to the health of humans and animals. Citrinin (CIT) causes slow growth in animals and damages the kidney function. Zearalenone (ZEN) causes chronic poisoning, abnormal functioning and even death in animals. Herein, a dual fluorescent immunochromatographic assay (DF-ICA) based on europium nanoparticles (EuNPs) was developed for the simultaneous detection of CIT and ZEN in the corn samples. After optimization, the limits of detection (LODs), IC50 and average recoveries for the simultaneous determination of CIT and ZEN were 0.06 and 0.11 ng/mL, 0.35 and 0.76 ng/mL, from 86.3% to 111.6% and from 86.6% to 114.4%, respectively. Moreover, the DF-ICA was validated by high performance liquid chromatography (HPLC) analyses, and a satisfactory consistency was obtained. In brief, this work demonstrates the feasibility of DF-ICA for simultaneous monitoring of CIT and ZEN in the corn samples.


Assuntos
Citrinina/análise , Contaminação de Alimentos/análise , Imunoensaio/métodos , Zea mays/química , Zearalenona/análise , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Cromatografia Líquida de Alta Pressão , Citrinina/imunologia , Európio/química , Fluorescência , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Zearalenona/imunologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33153907

RESUMO

Since the initial emergence of coronavirus disease 2019 (COVID-19) in Wuhan, Hubei province, China, a rapid spread of the disease occurred around the world, rising to become an international global health concern at pandemic level. In the face of this medical challenge threatening humans, the development of rapid and accurate methods for early screening and diagnosis of COVID-19 became crucial to containing the emerging public health threat, and prevent further spread within the population. Despite the large number of COVID-19 confirmed cases in China, some problematic cases with inconsistent laboratory testing results, were reported. Specifically, a high false-negative rate of 41% on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by real-time reverse transcription-polymerase chain reaction (qRT-PCR) assays was observed in China. Although serological testing has been applied worldwide as a complementary method to help identify SARS-CoV-2, several limitations on its use have been reported in China. Therefore, the use of both qRT-PCR and serological testing in the diagnosis of COVID-19 in China and elsewhere, presented considerable challenges, but when used in combination, can be valuable tools in the fight against COVID-19. In this review, we give an overview of the advantages and disadvantages of different molecular techniques for SARS-CoV-2 detection that are currently used in several labs, including qRT-PCR, gene sequencing, loop-mediated isothermal amplification (LAMP), nucleic acid mass spectrometry (MS), and gene editing technique based on clustered regularly interspaced short palindromic repeats (CRISPR/Cas13) system. Then we mainly review and analyze some causes of false-negative qRT-PCR results, and how to resolve some of the diagnostic dilemma.

3.
Int Immunopharmacol ; 88: 106998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33182064

RESUMO

Multiple sclerosis (MS) is an autoimmune disease for which conventional treatments have limited efficacy or side effects. Free radicals are primarily involved in blood-brain barrier disruption and induce neuronal and axonal damage, thus promoting the development of MS. Amifostine, a radioprotective drug used as a cytoprotective agent, attenuates oxidative stress and improves radiation damage by acting as a direct scavenger of reactive oxygen and nitrogen species. The aim of this study was to evaluate the effects of amifostine on MS in a mouse model of experimental autoimmune encephalomyelitis (EAE), which was developed by immunizing C57BL/6 mice with myelin oligodendrocyte glycoprotein and pertussis toxin. EAE mice received intraperitoneal injections of amifostine prior to onset of clinical symptoms and were monitored up to day 15 post induction. We observed abnormal clinical behavioral scores and a decrease in body weight. Histological analysis showed severe inflammatory infiltration and demyelination in the brain and spinal cord lumbar enlargements where significant upregulation of the mRNA expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8, downregulation of the anti-inflammatory cytokine interleukin-10, and obvious microgliosis were also observed. Amifostine treatment potently reversed these abnormal changes. The anti-inflammatory effect of amifostine was associated with the inhibition of reactive oxygen species generation. Furthermore, the expression of proteins involved in the NLRP3 signaling pathway and pyroptosis was decreased. In conclusion, our study showed that amifostine ameliorates induction of experimental autoimmune encephalomyelitis via anti-inflammatory and anti-pyroptosis effects, providing further insights into the use of amifostine for the treatment of MS.

4.
Food Chem ; : 128431, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33131960

RESUMO

In this study, purified rice bran oil (RBO) was used as a lipid matrix model to study the individual and binary antioxidant capacity of the minor constituents (α-tocopherol, γ-oryzanol and phytosterol) added at different concentrations and ratios. The results revealed that concentration influenced on the oxidation stability and scavenging capacity, while ratio mainly affected the type of interaction or the degree of synergism or antagonism. It was important to notice that the antioxidant capacity of α-tocopherol would decrease under high concentration. Besides, the inhibition of phytosterol on α-tocopherol and the formation of hydrogen bond between γ-oryzanol and phytosterol were speculated by the interactions of these minor constituents. This work helps to select efficient combinations for stabilizing the anti-oxidation of nutrient enriched RBO or provide suggestions for moderate retain of minor constituents in RBO.

5.
Clin Rehabil ; : 269215520972940, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33222502

RESUMO

OBJECTIVE: To explore effects of repetitive transcranial magnetic stimulation (rTMS) combined with transcranial direct current stimulation (tDCS) on motor function and cortex excitability in subacute stroke patients. DESIGN: Randomized controlled trial. SETTING: Inpatient hospitals. SUBJECTS: Sixty-five participants were randomly assigned to four groups: sham, 1Hz rTMS, cathodic tDCS combined with 1Hz rTMS (tDCS-/rTMS-) and anodic tDCS combined with 1Hz rTMS (tDCS+/rTMS-). INTERVENTIONS: Four interventions were used, including sham, 1Hz rTMS, and cathodal or anodal tDCS, followed by 1Hz rTMS over contralesional motor cortex, which continued for four weeks. MAIN MEASURES: Outcome measures were motor function and cortical excitability, evaluated by Fugl-Meyer Assessment, National Institutes of Health Stroke Scale and Barthel Index, resting Motion Threshold, Motor Evoked Potentials and Central Motor Conduction Time, assessed at baseline, four weeks and eight weeks. RESULTS: At four weeks after interventions, Fugl-Meyer Assessment lower limb change score in tDCS+/rTMS- group was significantly larger than other three groups (P < 0.001). There were significant differences in bilateral Motor Evoked Potentials changes between tDCS+/rTMS- group and sham group (P < 0.05). At eight weeks, compared to other groups, National Institutes of Health Stroke Scale (P = 0.003), Barthel Index (P = 0.002), FMA lower limb score (P < 0.001), and bilateral resting Motion Threshold, Motor Evoked Potentials (P < 0.05) showed significant changes in tDCS+/rTMS- group. Furthermore, Fugl-Meyer Assessment lower limb change score was associated with increased ipsilesional Motor Evoked Potentials (r = 0.703 P < 0.001) in tDCS+/rTMS- group. CONCLUSION: 1Hz rTMS combined with anode tDCS stimulation protocol could be a preferable rehabilitative strategy for motor recovery in subacute stroke patients.

6.
Sci Total Environ ; : 143549, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33223171

RESUMO

Mesophilic and thermophilic digestion has long been considered as preferred temperature ranges for anaerobic digestion. However, in this study, the effects of temperatures (37, 42, 47, and 55 °C) on the biomethane potential of corn stover were conducted with batch experiments, and the highest biomethane potential was at 42 °C. It was inferred that the change of feed materials, e.g., pretreatment caused by acidification (pH 6.0) during the lag time (4 days), was the main driver for higher biomethane potential. The natural pretreatment stimulated by a slight digestive temperature increase to 42 °C can enhance the biomethane potential of corn stover without adding extra acid. Meanwhile, metabolic pathways of methanogens changed from acetoclastic to mixotrophic and hydrogenotrophic methanogenesis. Based on these results, the transition temperature (42 °C) from mesophilic to thermophilic micro-organisms could be a promising option for corn stover anaerobic digestion.

7.
J Cell Biochem ; 2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33164261

RESUMO

Epidermal growth factor receptor (EGFR) induces peroxisome-proliferator-activated receptor-δ (PPARδ)-Y108 phosphorylation, while it is unclear the effect of phosphorylation of PPARδ on cancer cell metabolism. Here we found that EGF treatment increased its protein stability by inhibiting its lysosomal dependent degradation, which was reduced by gefitinib (EGFR inhibitor) treatment. PPARδ-Y108 phosphorylation in response to EGF recruited HSP90 (heat shock protein 90) to PPARδ resulting in increased PPARδ stability. In addition, PPARδ-Y108 phosphorylation promoted cancer cell metabolism, proliferation, and chemoresistance. Therefore, this study revealed a novel molecular mechanism of EGFR/HSP90/PPARδ pathway-mediated cancer cell metabolism, proliferation, and chemoresistance, which provides a strategy for cancer treatment.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33164491

RESUMO

Highly selective catalytic hydrogenation of alkynes to alkenes is a highly important reaction owing to its industrial and commercial application. Specifically, semihydrogenation of terminal alkynes has been more challenging than internal alkenes even using Lindlar catalysts. Also, the high reduction degree state metal-supported catalysts like Pd0/C, Pt0/C, and Ru0/C have been well-known to be used widely in hydrogenation due to their super activity. However, charcoal can absorb a large amount of water; Pd/C with 50% water is convenient on a large-scale synthesis. Charcoal generally bears oxygen groups on its surface, which are responsible for low selectivity and undesired products. Even typically, only 10-60% of the Pd metal atoms are exposed, they still suffer from poor stability in acids owing to leaching. Herein, we intend to design active and stable metal catalysts with features as the following to avoid leaching: having strong interaction with the support and coordinatively unsaturated metal sites or low valence state metals physically isolated from the acid environment. Herein, a highly efficient semihydrogenation of terminal alkynes to produce alkenes has been realized using a heterogeneous Pd(II)/POP-GIEC catalyst, imine-linked, crystalline, and porous organic polymer supporter modified by coordination of Pd(OAc)2 to its walls under mild conditions. Surprisingly, for the first time, modified POP-supported low reduction degree PdII catalysts were synthesized efficiently, and they were successfully used in semihydrogenation of terminal alkynes. The substrate scope was studied and included both unfunctionalized as well as functionalized substituents on the para, ortho, and meta position of aromatic alkynes. The substrate having a substituent with the functionality of fluoro protected at the meta position was semihydrogenated with a high alkyne conversion of 100% and olefin selectivity (up to 99%).

9.
Poult Sci ; 99(11): 5991-5998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142517

RESUMO

Salmonella spp. are important zoonotic pathogens that are responsible for severe diseases in both animals and humans. Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum) and biovar Pullorum (S. Pullorum) are typical infectious pathogens detected in the chicken industry that have caused great economic losses. To facilitate their detection and prevent contamination, we developed a rapid multiple PCR method, which can simultaneously detect Salmonella spp. and further identify the biovars S. Pullorum/Gallinarum. This PCR detection method is based on the cigR gene, which is conserved among Salmonella spp. but has a 42-bp deletion in S. Pullorum/Gallinarum. The specificity and sensitivity of the PCR assay was evaluated with 41 different strains: 34 Salmonella strains, including 5 S. Pullorum/Gallinarum strains, and 7 non-Salmonella strains. The lower limit of detection was 8.15 pg of S. Pullorum (S06004) genomic DNA and 20 cfu in PCR, which shows a great sensitivity. In addition, this method was applied to detect or identify Salmonella from processing chicken liver and egg samples, and the results corresponded to those obtained from serotype analysis using the conventional slide agglutination test. Overall, the new cigR-based PCR assay is efficient and practical for Salmonella detection and S. Pullorum/Gallinarum identification and will greatly reduce the workload of epidemiologic investigation.

10.
Biomed Pharmacother ; 133: 110975, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33212375

RESUMO

Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.

11.
Biosens Bioelectron ; 173: 112821, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33221510

RESUMO

Circulating tumor DNA (ctDNA) plays an important role in the early diagnosis and prognosis of several cancers and is a credible biomarker for predicting the response to therapy. Additionally, the fact that the strategy used to detect ctDNA is non-invasive also adds to the advantages of using ctDNA for predicting disease diagnosis and prognosis. However, low abundance in peripheral blood and the high background of wild-type DNA impair the precise and specific measurement of ctDNA. In this study, we developed a novel 3D GR/AuPtPd nanoflower sensing platform based on CRISPR/Cas9 cleavage-triggered entropy-driven strand displacement reaction (ESDR) for the effective detection of ctDNA. Low levels of ctDNA could be detected using this method as the ESDR amplification does require complicated operation procedures and stringent reaction conditions. By combining the advantages of the site-specific cleavage by "gene magic scissors," Cas9/sgRNA, with those of the rapid amplification kinetics of entropy-driven strand displacement, our method resulted in amplification efficiency as well as high specificity for discriminating single-nucleotide mismatches. The 3D GR/AuPtPd nanoflower-based electrochemical biosensor displayed high specificity and worthy performance in assays with human serum. Therefore, this pioneered method provides a new paradigm for efficient ctDNA detection and shows great potential for use in clinical and diagnostic applications.

12.
Aging (Albany NY) ; 122020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33226963

RESUMO

We previously defined the HERV-K Np9 as a viral oncogene. Here we report the discovery of a novel oncogene, Np17, which is homologous to the viral Np9 gene and predominantly present in Hominoidea. Np17 is located on chromosome 8, consists of 7 exons, and encodes a 16.8kDa nuclear protein with149 amino-acid residue. Functionally, knockdown of Np17 induced growth inhibition of leukemia cells, whereas enforced expression of Np17 promoted growth of leukemia cells in vitro and in vivo. In human leukemia, Np17 was detected in 59.65% (34/57) of acute myeloid leukemia (AML) patients examined and associated with refractory/relapsed AML. Mechanistically, Np17 decreased p53 levels and its mechanism might be involved in recruiting nuclear MDM2 to p53 for ubiquitin-mediated degradation. These findings reveal that Np17 is a novel oncogene associated with refractory/relapsed leukemia.

13.
Sci Total Environ ; : 143025, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33138999

RESUMO

Decline in snow mass threatens the regional economy that critically depends on meltwater. However, the economic scale of snow mass loss is hardly understood, and its role in the vulnerability of future economic development is unclear. We investigate the current reserves of snow cover and the value of its loss. The result showed that the total annual snow mass in western China declines at a rate of 3.3 × 109 Pg per decade (p < 0.05), which accounts for approximately 0.46% of the mean of annual snow mass (7.2 × 1011 Pg). Snow mass loss over the past 40 years in western China turns into an average loss value of CN¥0.1 billion (in the present value) every year ($1 = CN¥7). If the trend continues at the current rate, the accumulated loss value would rise to CN¥63 billion by 2040. Furthermore, subject to the combinations of RCPs and SSPs scenario, the future economic value of snow mass loss in western China appears to accelerate driven by both declining snowmelt resources and socioeconomic development demand. RCP26-SSP1 is the pathway among all to have the least economic cost in replacing the snowmelt loss, and the cost would be quadrupled in RCP80-SSP3 scenario by 2100. At a basin scale, the declining snow mass would turn the regional economy to be more vulnerable except Junggar and Ili endorheic basin. The Ertis river and Qaidam endorheic basins display to be most vulnerable. It highlights that the snow value can be economically important in the regions of west China and should be considered more properly in water resources management.

14.
Int J Nanomedicine ; 15: 8495-8506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154639

RESUMO

Objective: Traumatic brain injury (TBI) is a serious health problem with few available treatment options. Rh-erythropoietin (rh-EPO) is a potential therapeutic drug for TBI, but it cannot cross the blood-brain barrier (BBB) directly. In this regard, a novel strategy to deliver rh-EPO for enhanced TBI treatment is via the development of Tween 80 modified albumin nanoparticles using electrostatic spray technology. Methods: The rh-EPO loaded Tween 80 modified albumin nanoparticles (rh-EPO-Tw-ABNPs) were prepared by electrostatic spray technology, while the process parameters were optimized via a single factor design. Investigation of physicochemical properties, bioactivity and stability of rh-EPO-Tw-ABNPs was carried out. The in vitro release and biocompatibility with nerve cells were also analyzed. The in vivo brain targeting efficiency, brain edema relieving effect and the expression of aquaporin 4 (AQP4) and glial fibrillary acidic protein (GFAP) in the brain were evaluated in TBI model rats. Results: The particle size of optimal rh-EPO-Tw-ABNPs was about 438 ± 45 nm, with a zeta potential of -25.42 ± 0.8 mv. The average drug loading ratio of rh-EPO-Tw-ABNPs was 21.3± 3.7 IU/mg with a relative bioactivity of 91.6 ± 4.1%. The in vitro release of rh-EPO from the nanoparticles was rather slow, while neither the blank Tw-ABNPs nor rh-EPO-Tw-ABNPs exhibited toxicity on the microglia cells. Furthermore, in vivo experiments indicated that the rh-EPO-Tw-ABNPs could enhance the distribution of EPO in the brain and relieve brain edema more effectively. Moreover, compared with an rh-EPO injection, the rh-EPO-Tw-ABNPs could increase the AQP4 level but reduced GFAP expression in the brain with more efficiency. Conclusion: The rh-EPO-Tw-ABNPs could enhance the transport of rh-EPO into the brain with superior therapeutic effect for TBI.

15.
Reprod Biol Endocrinol ; 18(1): 104, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148278

RESUMO

A member of the newly discovered RNA family, circular RNA (circRNA) is considered as the intermediate product of by-product splicing or abnormal RNA splicing. With the development of RNA sequencing, circRNA has recently drawn research interest. CircRNA exhibits stability, species conservatism, and tissue cell specificity. It acts as a miRNA sponge in the circRNA-microRNA (miRNA-mRNA axis, which can regulate gene transcription and protein translation. Studies have confirmed that circRNA is ubiquitous in eukaryotic cells, which play an important role in the regulation of human gene expression and participate in the occurrence and development of various human diseases. CircRNA may be closely related to the occurrence and development of female reproductive system diseases. By analyzing the biological functions and mechanism of circRNA, we find that circRNA has certain development prospects as biomarkers of the female reproductive system diseases. The production and degradation of circRNA, biological functions, and their association with the occurrence of diseases of female reproductive system are reviewed in this article.

16.
Aging (Albany NY) ; 12(21): 20968-20981, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152709

RESUMO

To investigate the associations between subjective perception of impacts and willingness to change dietary habits in China after experiencing the outbreak of the 2019 novel coronavirus disease (COVID-19), an online questionnaire survey was carried out and 22,459 respondents in mainland China participated in the study, with an average age of 27.9±7.8 years old. Of them, 84.5% self-reported epidemic concern (middle or above), and 60.2%, 66.3% and 66.8% self-reported impact (middle or above) on psychology, life, work respectively. 31.9%, 46.0% and 41.0% of respondents reported their willingness to reduce their dietary intakes of salt, fried foods, and sugary foods, respectively. The stratified analysis of multinomial logistic regression models showed that, respondents with higher psychological impact were more likely to increase their dietary intake of salt, fried foods, sugary foods. Except as aforesaid, most respondents with higher epidemic concerns and higher impacts on psychology, life, work were more likely to reduce eating salt, fried foods, sugary foods. After the epidemic, early stage of positive improvement to a proper diet was observed, whereas the opposite tendency was also found in some respondents with higher impact on psychology. Thus, there is an urgent need for health care and lifestyle intervention policies for different subgroups.

17.
Aging (Albany NY) ; 12(21): 21798-21808, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33186918

RESUMO

The purpose of this study was to investigate the potential roles of protein kinase C beta (PRKCB) in the pathogenesis of Alzheimer's disease (AD). We identified 2,254 differentially expressed genes from 19,245 background genes in AD versus control as well as PRKCB-low versus high group. Five co-expression modules were constructed by weight gene correlation network analysis. Among them, the 1,222 genes of the turquoise module had the strongest relation to AD and those with low PRKCB expression, which were enriched in apoptosis, axon guidance, gap junction, Fc gamma receptor (FcγR)-mediated phagocytosis, mitogen-activated protein kinase (MAPK) and vascular endothelial growth factor (VEGF) signaling pathways. The intersection pathways of PRKCB in AD were determined, including gap junction, FcγR-mediated phagocytosis, MAPK and VEGF signaling pathways. Based on the performance evaluation of the area under the curve of 75.3%, PRKCB could accurately predict the onset of AD. Therefore, low expressions of PRKCB was a potential causative factor of AD, which might be involved in gap junction, FcγR-mediated phagocytosis, MAPK and VEGF signaling pathways.

18.
Trends Biotechnol ; 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33199047

RESUMO

Thraustochytrids can accumulate over 150 g/l biomass, containing up to 55% lipids, without any genetic modification. Their broad substrate utilization capacity, several effective key metabolic pathways, and a well-developed suite of bioprocess engineering strategies all point toward great promise for the future development of these marine protists.

19.
IEEE Trans Cybern ; PP2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206614

RESUMO

Multi-label learning deals with training examples each represented by a single instance while associated with multiple class labels. Due to the exponential number of possible label sets to be considered by the predictive model, it is commonly assumed that label correlations should be well exploited to design an effective multi-label learning approach. On the other hand, class-imbalance stands as an intrinsic property of multi-label data which significantly affects the generalization performance of the multi-label predictive model. For each class label, the number of training examples with positive labeling assignment is generally much less than those with negative labeling assignment. To deal with the class-imbalance issue for multi-label learning, a simple yet effective class-imbalance aware learning strategy called cross-coupling aggregation (Cocoa) is proposed in this article. Specifically, Cocoa works by leveraging the exploitation of label correlations as well as the exploration of class-imbalance simultaneously. For each class label, a number of multiclass imbalance learners are induced by randomly coupling with other labels, whose predictions on the unseen instance are aggregated to determine the corresponding labeling relevancy. Extensive experiments on 18 benchmark datasets clearly validate the effectiveness of Cocoa against state-of-the-art multi-label learning approaches especially in terms of imbalance-specific evaluation metrics.

20.
Sci Total Environ ; : 143375, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189376

RESUMO

The relationship between excess copper (Cu) intake and lipid metabolic disorders is not well-studied, and most studies on this topic have a cross-sectional design. Here, we investigated the relationship between Cu exposure and blood lipid metabolism in women population, as well as potential mediation effects of oxidative stress and inflammation, using a repeated-measurement study. A total of 35 women in northern China were included, and each individual was visited for five times. Blood samples were collected, and the following serum biomarkers were analyzed: heme oxygenase-1 (HO-1), monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-6, IL-8, and lipids [triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and lipoprotein(a) (Lp(a))]. A linear mixed-effect model was used to analyze the associations between Cu and the individual biomarkers in serum. The results showed that Cu was positively associated with TG (ß = 0.0007, P = 0.01), TC (ß = 0.0006, P = 0.002), LDL (ß = 0.0004, P ≤ 0.001), and Lp(a) (ß = 0.0004, P = 0.01), but not associated with HDL (ß = 0.0001, P = 0.19). Likewise, serum Cu was positively associated with HO-1 (ß = 0.0004, P = 0.03) and negatively associated with MCP-1 (ß = -0.0006, P = 0.003) and IL-8 (ß = -0.002, P = 0.03). Among the biomarkers of oxidative stress, inflammation, and lipids in serum, only IL-8 was negatively associated with HDL (ß = -0.0004, P = 0.009). No other associations were observed. We conclude that high Cu exposure may elevate blood lipid levels as well as disturb processes related to oxidative stress and inflammation responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA