Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.273
Filtrar
1.
Phys Chem Chem Phys ; 25(12): 8439-8445, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36916456

RESUMO

Phenalenyl (C13H9) is the smallest triangular unit of a graphene nanosheet, and has been experimentally verified to be stable in radical (C13H9˙), cationic (C13H9+), and anionic (C13H9-) states. All these three species feature high symmetry and stability as well as delocalized π electrons, a visible sign of aromaticity, but their aromatic origin remains a challenge. This work reports new chemical insights into the π electrons of C13H9+/0/- and deciphers their aromaticity using a recently emerged two-dimensional (2D) superatomic-molecule theory. 12π-C13H9+, 13π-C13H9˙, and 14π-C13H9- are seen as triangular 2D superatomic molecules ◊O3, ◊O3-, and ◊O32-, respectively, where ◊O denotes a 2D benzenoid superatom bearing 4 π electrons. Visualized superatomic Lewis structures show that each ◊O can dynamically adjust its π electrons to satisfy the superatomic sextet rule of benzene via superatomic lone pairs and covalent bonds. C13H9+/0/- are representatives of adaptive aromaticity in the 2D superatomic-molecule system, exhibiting flexible π electronic structures to achieve shell-closure. Moreover, we specially adopt a progressive methodology to study the evolution of 2D periodic materials, by applying this theory to the similar family of C6H3N7, C18H6N22 and graphitic carbon nitride (g-C3N4) crystals, and meanwhile accounting for the special stability of g-C3N4. This work enriches 2D superatomic bonding chemistry and provides a useful strategy to design new 2D functional nanostructured materials.

2.
Adv Healthc Mater ; : e2300184, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943098

RESUMO

In this study, a sialic acid (SA) and transferrin (TF) imprinted biodegradable disulfide bridging organosilicas-based drug delivery system (SS-DMONS/DOX-Ce6@MIPs) for targeted cancer therapy was constructed, for the first time. Disulfide bridged dendritic mesoporous organosilicas nanoparticles (SS-DMONs) not only enhance drug loading as the drug repository, but also provide enough specific surface area for the molecular imprinting shell to expose more degradation and imprinted sites on the surface. In addition, -S-S- could be disturbed in a highly reducing tumor microenvironment to achieve degradation. The biodegradable imprinting film, prepared with customized 2-amino-N-(3,4-dihydroxyphenethyl)-3-mercaptopropanamide and 4-mercaptophenylboronic acid as functional monomers, endowed SS-DMONs with active targeting capacity, and responsive drug release through degradation under acidic and highly reductive tumor microenvironment. SS-DMONS/DOX-Ce6@MIPs after binding of TF could target tumor cells actively through multiple interactions, including the affinity between antigen and antibody, and the specific recognition between molecularly imprinted polymers and template molecules. Under laser irradiation the loaded chlorin e6 (Ce6) that can produce toxic reactive oxygen, combined with the doxorubicin (DOX), achieved chemical/photodynamic synergistic anticancer effects. SS-DMONS/DOX-Ce6@MIPs presented excellent tumor targeting and dual-responsive drug release, which provides an effective strategy for chemical/photodynamic anti-tumor therapy. This article is protected by copyright. All rights reserved.

3.
Clin Transl Med ; 13(3): e1130, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36881552

RESUMO

BACKGROUND: Brugada syndrome (BrS) is causing sudden cardiac death (SCD) mainly at young age. Studying the underlying mechanisms associated with BrS type I electrocardiogram (ECG) changes in the presence of fever and roles of autophagy for BrS remains lacking. OBJECTIVES: We sought to study the pathogenic role of an SCN5A gene variant for BrS with fever-induced type 1 ECG phenotype. In addition, we studied the role of inflammation and autophagy in the pathomechanism of BrS. METHODS: Human-induced pluripotent stem cell (hiPSC) lines from a BrS patient harboring a pathogenic variant (c.3148G>A/p. Ala1050Thr) in SCN5A and two healthy donors (non-BrS) and a CRISPR/Cas9 site-corrected cell line (BrS-corr) were differentiated into cardiomyocytes (hiPSC-CMs) for the study. RESULTS: Reductions of Nav 1.5 expression, peak sodium channel current (INa ) and upstroke velocity (Vmax ) of action potentials with an increase in arrhythmic events were detected in BrS compared to non-BrS and BrS-corr cells. Increasing the cell culture temperature from 37 to 40°C (fever-like state) exacerbated the phenotypic changes in BrS cells. The fever-effects were enhanced by protein kinase A (PKA) inhibitor but reversed by PKA activator. Lipopolysaccharides (LPS) but not increased temperature up to 40°C enhanced the autophagy level in BrS-hiPSC-CMs by increasing reactive oxidative species and inhibiting PI3K/AKT signalling, and hence exacerbated the phenotypic changes. LPS enhanced high temperature-related effect on peak INa shown in BrS hiPSC-CMs. Effects of LPS and high temperature were not detected in non-BrS cells. CONCLUSIONS: The study demonstrated that the SCN5A variant (c.3148G>A/p.Ala1050Thr) caused loss-of-function of sodium channels and increased the channel sensitivity to high temperature and LPS challenge in hiPSC-CMs from a BrS cell line with this variant but not in two non-BrS hiPSC-CM lines. The results suggest that LPS may exacerbate BrS phenotype via enhancing autophagy, whereas fever may exacerbate BrS phenotype via inhibiting PKA-signalling in BrS cardiomyocytes with but probably not limited to this variant.


Assuntos
Síndrome de Brugada , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Síndrome de Brugada/genética , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases , Eletrocardiografia
4.
J Med Genet ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898841

RESUMO

BACKGROUND: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS: To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS: We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS: This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.

5.
Biomed Res Int ; 2023: 9298728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874926

RESUMO

Objective: The aim of the study was to explore the potential mechanism of Zanthoxylum bungeanum in the treatment of diabetes mellitus (DM) using network pharmacology. Methods: The DrugBank database and TCMSP platform were used to search for the main chemical components and their targets of Zanthoxylum bungeanum, and the genes related to diabetes mellitus were obtained from the genecards database. Import the data into the Venny 2.1.0 platform for intersection analysis to obtain the Zanthoxylum bungeanum-DM-gene dataset. The protein-protein interaction (PPI) analysis of Zanthoxylum bungeanum-DM gene was performed using the String data platform, and the visualization and network topology analysis were performed using Cytoscape 3.8.2. The KEGG pathway enrichment and biological process of GO enrichment analysis were carried out using the David platform. The active ingredients and key targets of Zanthoxylum bungeanum were molecularly docked to verify their biological activities by using Discovery Studio 2019 software. Zanthoxylum bungeanum was extracted and isolated by ethanol and dichloromethane. HepG2 cells were cultured, and cell viability assay was utilized to choose the suitable concentration of Zanthoxylum bungeanum extract (ZBE). The western blot assay was used for measuring the expression of AKT1, IL6, HSP90AA1, FOS, and JUN proteins in HepG2 cells. Results: A total of 5 main compounds, 339 targets, and 16656 disease genes were obtained and retrieved, respectively. A total of 187 common genes were screened, and 20 core genes were finally obtained after further screening. The antidiabetic active ingredients of Zanthoxylum bungeanum are kokusaginin, skimmianin, diosmetin, beta-sitosterol, and quercetin, respectively. The main targets for its antidiabetic effect are AKT1, IL6, HSP90AA1, FOS, and JUN, respectively. GO enrichment analysis revealed that the biological process of Zanthoxylum bungeanum and DM is related to a positive regulation of gene expression, positive regulation of transcription, positive regulation of transcription from RNA polymerase II promoter, response to drug, positive regulation of apoptotic process, and positive regulation of cell proliferation, etc. KEGG enrichment analysis revealed that common biological pathways mainly including the phospholipase D signaling pathway, MAPK signaling pathway, beta-alanine metabolism, estrogen signaling pathway, PPAR signaling pathway, and TNF signaling pathway. Molecular docking results showed that AKT1 with beta-sitosterol and quercetin, IL-6 with diosmetin and skimmianin, HSP90AA1 with diosmetin and quercetin, FOS with beta-sitosterol and quercetin, and JUN with beta-sitosterol and diosmetin have relatively strong binding activity, respectively. Experiment verification results showed that DM could be significantly improved by downregulating the expression of AKT1, IL6, HSP90AA1, FOS, and JUN proteins after being treated at concentrations of 20 µmol/L and 40 µmol/L of ZBE. Conclusion: The active components of Zanthoxylum bungeanum mainly including kokusaginin, skimmianin, diosmetin, beta-sitosterol, and quercetin. The therapeutic effect of Zanthoxylum bungeanum on DM may be achieved by downregulating core target genes including AKT1, IL6, HSP90AA1, FOS, and JUN, respectively. Zanthoxylum bungeanum is an effective drug in treatment of DM related to the above targets.


Assuntos
Diabetes Mellitus , Zanthoxylum , Quercetina , Farmacologia em Rede , Simulação de Acoplamento Molecular , Interleucina-6 , Hipoglicemiantes
6.
Ann Hematol ; 102(4): 907-916, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36757444

RESUMO

The rate of intensive care unit (ICU) mortality in patients with hematologic malignancies is high. The risk factors for this were inconsistent across several previous studies, and there is currently no accepted consensus around risk factors for these patients. We aimed to identify which prognostic factors were associated with ICU mortality in critically ill patients with hematologic malignancies, nearly half of which were allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. In addition, we aimed to compare the characteristics and clinical outcomes of patients with and without allogenic allo-HSCT. In total, 217 patients with hematologic malignancies were enrolled consecutive, 119 (54.8%) of whom underwent HSCT (allo-HSCT: n = 115). All survivors were followed up with until August 1, 2022. The rate of ICU mortality in this cohort was 54.4%: 55.5 and 53.1% for the patients with and without HSCT, respectively (p = 0.724). The probabilities of survival after ICU admission were also comparable between the patients who had allo-HSCT and those who did not. A multivariable analysis revealed that cerebrovascular disease, hyperlactic acidemia on the day of ICU admission, lower platelet count, use of vasoactive drugs, and absence of noninvasive ventilation on the day of ICU admission were independent risk factors for ICU mortality. For patients with three to five of these risk factors, the rate of ICU mortality was as high as 84.6%, which was significantly higher than that of other patients. In this study, the ICU mortality rate in patients with hematologic malignancies was still high, particularly for those with multiple risk factors. However, allo-HSCT was not found to be a risk factor for ICU mortality.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Humanos , Prognóstico , Estudos Retrospectivos , Unidades de Terapia Intensiva , Transplante Homólogo , Fatores de Risco , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
7.
Psychopharmacology (Berl) ; 240(4): 713-724, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36847832

RESUMO

RATIONALE: Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES: To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS: Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS: Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS: Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.


Assuntos
Endotoxemia , Fator 2 Relacionado a NF-E2 , Córtex Pré-Frontal , Animais , Camundongos , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Depressão/patologia , Endotoxemia/metabolismo , Hipocampo/metabolismo , Lipopolissacarídeos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Adolescente , Humanos , Modelos Animais de Doenças , Transdução de Sinais
8.
Blood Sci ; 5(1): 51-59, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36742189

RESUMO

Epstein-Barr virus (EBV) reactivation is one of the most important infections after hematopoietic stem cell transplantation (HSCT) using haplo-identical related donors (HID). We aimed to establish a comprehensive model with machine learning, which could predict EBV reactivation after HID HSCT with anti-thymocyte globulin (ATG) for graft-versus-host disease (GVHD) prophylaxis. We enrolled 470 consecutive acute leukemia patients, 60% of them (n = 282) randomly selected as a training cohort, the remaining 40% (n = 188) as a validation cohort. The equation was as follows: Probability (EBV reactivation) =   1 1       +       e x p ( - Y ) , where Y = 0.0250 × (age) - 0.3614 × (gender) + 0.0668 × (underlying disease) - 0.6297 × (disease status before HSCT) - 0.0726 × (disease risk index) - 0.0118 × (hematopoietic cell transplantation-specific comorbidity index [HCT-CI] score) + 1.2037 × (human leukocyte antigen disparity) + 0.5347 × (EBV serostatus) + 0.1605 × (conditioning regimen) - 0.2270 × (donor/recipient gender matched) + 0.2304 × (donor/recipient relation) - 0.0170 × (mononuclear cell counts in graft) + 0.0395 × (CD34+ cell count in graft) - 2.4510. The threshold of probability was 0.4623, which separated patients into low- and high-risk groups. The 1-year cumulative incidence of EBV reactivation in the low- and high-risk groups was 11.0% versus 24.5% (P < .001), 10.7% versus 19.3% (P = .046), and 11.4% versus 31.6% (P = .001), respectively, in total, training and validation cohorts. The model could also predict relapse and survival after HID HSCT. We established a comprehensive model that could predict EBV reactivation in HID HSCT recipients using ATG for GVHD prophylaxis.

10.
Oxid Med Cell Longev ; 2023: 4144138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814956

RESUMO

Background: Studies that looked at asthma airway remodeling pathogenesis and prevention have led to the discovery of the rat sarcoma viral oncogene (RAS) signaling pathway as a key mechanism that controls airway smooth muscle cell (ASMC) proliferation. Baicalin has great anti-inflammatory, proliferation-inhibited, and respiratory disease-relieving properties. However, the inhibitory effects and mechanisms of baicalin on ASMC-mediated airway remodeling in mice are still poorly understood. Methods: After establishing the asthmatic mice model by ovalbumin (OVA) and interfering with baicalin, airway remodeling characteristics such as airway resistance, mRNA, and protein expression levels of remodeling-related cytokines were measured by histopathological assessment, quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Further efforts on detailed mechanisms were used antibody arrays to compare the expression and activation of proteins involved in the RAS signaling pathway. In addition, validation experiments were performed in ASMC proliferation model and low-expression cells of the target gene by using shRNA. Results: In OVA-induced asthmatic mice model, baicalin significantly reduced the infiltration of inflammatory cells in lung tissue, attenuated airway resistance, and decreased mRNA and protein expression levels of remodeling-related cytokines such as interleukin-13 (IL-13), vascular endothelial growth factor (VEGF), transforming growth factor-beta 1 (TGF-ß1), matrix metallopeptidase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1). The results of antibody arrays involved in RAS signaling pathway revealed that OVA and baicalin administration altered the activation of protein kinase C alpha type (PKC-α), A-rapidly accelerated fibrosarcoma (A-RAF), mitogen-activated protein kinase 2 (MEK2), extracellular regulated MAP kinase (ERK), MAPK interacting serine/threonine kinase 1 (MNK1), and ETS transcription factor 1 (ELK1). The above results were further verified in the ASMC proliferation model. A-RAF silencing (shA-RAF) could promote ASMC proliferation and downregulate p-MEK2, p-ERK, p-MNK1, and p-ELK1 expression. Conclusion: The effects of baicalin against airway remodeling and ASMC proliferation might partially be achieved by suppressing the RAS signaling pathway. Baicalin may be a new therapeutic option for managing airway remodeling in asthma patients.


Assuntos
Remodelação das Vias Aéreas , Asma , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Asma/tratamento farmacológico , Transdução de Sinais , Pulmão/patologia , Citocinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , RNA Mensageiro/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 920548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824359

RESUMO

Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. Methods: We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.


Assuntos
Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Hipófise/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Transplant Cell Ther ; 29(4): 240.e1-240.e10, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634739

RESUMO

Heart failure (HF) is an uncommon but serious cardiovascular complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Unfortunately, knowledge about early mortality prognostic factors in patients with HF after allo-HSCT is limited, and an easy-to-use prognostic model is not available. This study aimed to develop and validate a clinical-biomarker prognostic model capable of predicting HF mortality following allo-HSCT that uses a combination of variables readily available in clinical practice. To investigate this issue, we conducted a retrospective analysis at our center with 154 HF patients who underwent allo-HSCT between 2008 and 2021. The patients were separated according to the time of transplantation, with 100 patients composing the derivation cohort and the other 54 patients composing the external validation cohort. We first calculated the univariable association for each variable with 2-month mortality in the derivation cohort. We then included the variables with a P value <.1 in univariate analysis as candidate predictors in the multivariate analysis using a backward stepwise logistic regression model. Variables remaining in the final model were identified as independent prognostic factors. To predict the prognosis of HF, a scoring system was established, and scores were assigned to the prognostic factors based on the regression coefficient. Finally, 4 strongly significant independent prognostic factors for 2-month mortality from HF were identified using multivariable logistic regression methods with stepwise variable selection: pulmonary infection (P = .005), grade III to IV acute graft-versus-host disease (severe aGVHD; P = .033), lactate dehydrogenase (LDH) >426 U/L (P = .049), and brain natriuretic peptide (BNP) >1799 pg/mL (P = .026). A risk grading model termed the BLIPS score (for BNP, LDH, cardiac troponin I, pulmonary infection, and severe aGVHD) was constructed according to the regression coefficients. The validated internal C-statistic was .870 (95% confidence interval [CI], .798 to .942), and the external C-statistic was .882 (95% CI, .791-.973). According to the calibration plots, the model-predicted probability correlated well with the actual observed frequencies. The clinical use of the prognostic model, according to decision curve analysis, could benefit HF patients. The BLIPS model in our study can serve to identify HF patients at higher risk for mortality early, which might aid designing timely targeted therapies and eventually improving patients' survival and prognosis.

13.
Quant Imaging Med Surg ; 13(1): 417-427, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36620130

RESUMO

Background: Unforeseen dural ossification (DO) increases the risk of complications in the surgical management of thoracic ossification of the ligamentum flavum (OLF). Several methods have been proposed to identify DO; however, these approaches either have low diagnostic accuracy or poor feasibility. Therefore, we aimed to determine the relationship between DO and the severity and range of thoracic OLF compression using a 3-dimensional (3D) imaging analysis and to evaluate its superiority in diagnosing DO over conventional measurement methods. Methods: A total of 114 consecutive patients who underwent decompressive laminectomy for thoracic OLF in 4 institutions were retrospectively enrolled and divided into DO and non-DO groups. Univariate analysis was performed to determine the relationship between OLF compression and DO. We measured the 3D occupying ratio (OR; 3D OR = OLF volume/normal canal volume × 100%), calculated its cutoff values, and compared its diagnostic value in DO with that of conventional 1D and 2D radiological parameters in the whole thoracic spine. Results: The 3D OR in the DO group (50.9%±7.9%) was significantly higher than that in the non-DO group (30.8%±7.5%; P<0.01). The overall reliability and reproducibility for measurements of the 3D OR (intra- and interobserver correlation coefficients 0.94 and 0.90, respectively) were excellent. Thus, the 3D OR could be used as an indicator to distinguish between DO and non-DO, with high diagnostic accuracy (91.2%). Moreover, a 3D OR of >43%, known as the "ossification zone", was indicative of DO in OLF, whereas a value of <37% was considered the "safe zone". Additionally, the 3D OR [area under the curve (AUC) =0.98, 95% confidence interval (CI): 0.93-0.99] showed a statistically higher diagnostic value for DO in the upper, middle, lower, and whole thoracic spine than did both 1D (AUC =0.81; 95% CI: 0.73-0.88) and 2D (AUC =0.87; 95% CI: 0.79-0.92) parameters (P<0.01). Conclusions: DO was significantly associated with the severity and range of OLF compression. The 3D OR could be used as a critical diagnostic indicator for identifying DO in the whole thoracic spine, owing to its superiority over conventional radiological parameters. Classification of the 3D OR could maximize the clinical feasibility and thus help surgeons to decrease the incidence of DO-related surgical complications.

14.
Sci Total Environ ; 865: 161289, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587698

RESUMO

Recycling urban tail water for ecological base flow and landscape use offers a reliable solution for the problem of water resource shortage. But the long-term direct discharge of urban tail water can aggravate the eutrophication of surface water based on the present drainage standard of sewage plant. It is of great significance to develop low-cost and low-energy ecological technologies as transitional region between urban tail water and surface water. In this study, a pilot-scale ecological bed coupled with microbial electrochemical system (EB-MES) was established to treat urban tail water deeply. The system was operated for 96 days from June to September. Average TN removal efficiency in EB-MES under the condition of submerged plant coupled closed-circuit MES could reach 59.0 ± 16.6 %, which was 82.7 % and 38.1 % higher than that of open-circuit EB-MES and MES without plants, respectively. Microbial community structure testing indicated that multiple nitrogen metabolic mechanisms occurred in the system, including nitrification, electrode autotrophic denitrification, anammox, simultaneous nitrification and denitrification, and aerobic denitrification, which results in better denitrification efficiency under tail water. Our research provided a novel ecological technology with advantages of high-efficiency, low-energy and low-carbon and verified the feasibility in pilot scale for application in the advanced treatment of urban tail water.


Assuntos
Desnitrificação , Purificação da Água , Nitrificação , Esgotos/química , Purificação da Água/métodos , Processos Autotróficos , Nitrogênio/análise , Reatores Biológicos
15.
Curr Treat Options Oncol ; 24(1): 12-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36598620

RESUMO

OPINION STATEMENT: Cancer patients who receive high-dose thoracic radiotherapy may develop radiation-induced heart disease (RIHD). The clinical presentation of RIHD comprises coronary artery atherosclerosis, valvular disease, pericarditis, cardiomyopathy, and conduction defects. These complications have significantly reduced due to the improved radiotherapy techniques. However, such methods still could not avoid heart radiation exposure. Furthermore, people who received relatively low-dose radiation exposures have exhibited significantly elevated RIHD risks in cohort studies of atomic bomb survivors and occupational exposures. The increased potential in exposure to natural and artificial ionizing radiation sources has emphasized the necessity to understand the development of RIHD. The pathological processes of RIHD include endothelial dysfunction, inflammation, fibrosis, and hypertrophy. The underlying mechanisms may involve the changes in oxidative stress, DNA damage response, telomere erosion, mitochondrial dysfunction, epigenetic regulation, circulation factors, protein post-translational modification, and metabolites. This review will discuss the recent advances in the mechanisms of RIHD at cellular and molecular levels.


Assuntos
Doença da Artéria Coronariana , Cardiopatias , Lesões por Radiação , Humanos , Epigênese Genética , Cardiopatias/etiologia , Coração , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Doença da Artéria Coronariana/complicações
16.
Nat Chem Biol ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635564

RESUMO

Membrane dynamics are important to the integrity and function of mitochondria. Defective mitochondrial fusion underlies the pathogenesis of multiple diseases. The ability to target fusion highlights the potential to fight life-threatening conditions. Here we report a small molecule agonist, S89, that specifically promotes mitochondrial fusion by targeting endogenous MFN1. S89 interacts directly with a loop region in the helix bundle 2 domain of MFN1 to stimulate GTP hydrolysis and vesicle fusion. GTP loading or competition by S89 dislodges the loop from the GTPase domain and unlocks the molecule. S89 restores mitochondrial and cellular defects caused by mitochondrial DNA mutations, oxidative stress inducer paraquat, ferroptosis inducer RSL3 or CMT2A-causing mutations by boosting endogenous MFN1. Strikingly, S89 effectively eliminates ischemia/reperfusion (I/R)-induced mitochondrial damage and protects mouse heart from I/R injury. These results reveal the priming mechanism for MFNs and provide a therapeutic strategy for mitochondrial diseases when additional mitochondrial fusion is beneficial.

17.
Int J Environ Health Res ; : 1-11, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36628496

RESUMO

Previous studies have linked exposure to light at night (LAN) with various health outcomes, but evidence is limited for the LAN-obesity association. Thestudy analysed data from 24,845 participants of the 33 Communities Chinese Health Study and obesity (BMI ≥28 kg/m2) was defined according to the Working Group on Obesity in China. The Global Radiance Calibrated Nighttime Lights data were used to estimate participants' LAN exposure. The mixed-effect regression models examined the LAN-BMI and LAN-obesity association. We found that higher LAN exposure was significantly associated with greater BMI and higher risk of obesity. Changes of BMI and the odds ratios (ORs) of obesity and 95% confidence intervals (CIs) for 2nd, 3rd, and 4th against the 1st quartile of LAN exposure were 0.363 (0.208, 0.519), 0.364 (0.211, 0.516) and 0.217 (0.051, 0.383); 1.228 (1.099, 1.371), 1.356 (1.196, 1.538) and 1.269 (1.124, 1.433), respectively. Age and regular exercise showed significant modification effects on the LAN-obesity association.

18.
Biochem Biophys Res Commun ; 642: 21-26, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36543020

RESUMO

The thyroid follicular cells originate from the foregut endoderm and elucidating which genes and signaling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to carry an ENU-based forward mutagenesis screen aiming at identifying genes involved in the development and function of the thyroid follicular cells. ENU is an excellent chemical mutagen due to its high mutation efficiency and an indiscriminate selection of genes. A total of 1606 F2 families from 36 ENU treated founders was raised and embryos from F3 generation were collected at 5dpf to perform the whole embryo in situ hybridization with a cocktail probe of thyroid marker thyroglobulin(tg), pituitary marker thyroid stimulating hormone (tshba) to determine the mutagenic phenotype. Among the 1606 F2 families, 112 F2 mutant families with normal development stages except for thyroid dysfunction were identified and divided into three different groups according to their phenotypic characteristics. Further studies of the mutants are likely to shed more insights into the molecular basis of both the thyroid development and function in the zebrafish and vertebrate.


Assuntos
Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/genética , Testes Genéticos , Mutação , Mutagênese
19.
Inflamm Res ; 72(2): 313-328, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538077

RESUMO

PURPOSE: The purpose of this review is to discuss the significance of IL-17 in SLE and the potential of IL-17-targeted therapy. BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs and tissues throughout the body. It is characterized by overactive B and T cells and loss of immune tolerance to autoantigens. Interleukin-17 (IL-17) is a cytokine that promotes inflammation and has been implicated in the pathogenesis of several autoimmune diseases as well as inflammatory diseases. In in vitro cellular experiments in lupus susceptible mice or SLE patients, there is substantial evidence that IL-17 is a highly promising therapeutic target. METHODS: We searched papers from PubMed database using the search terms, such as interleukin-17, systemic lupus erythematosus, treatment targets, T cells, lupus nephritis, and other relevant terms. RESULTS: We discuss in this paper the molecular mechanisms of IL-17 expression, Th17 cell proliferation, and the relationship between IL-17 and Th17. The significance of IL-17 in SLE and the potential of IL-17-targeted therapy are further discussed in detail. CONCLUSION: IL-17 has a very high potential for the development as a star target in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Interleucina-17 , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Células Th17
20.
J Org Chem ; 88(1): 647-652, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36480338

RESUMO

A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...