Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.408
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 722187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539575

RESUMO

Objective: Observational studies have demonstrated a close relationship between obesity and longevity. The aim of this Mendelian randomization (MR) study is to investigate whether genetic determinants of visceral adipose tissue (VAT) accumulation are causally associated with longevity. Methods: In this two-sample MR study, we used summary data of genetic determinants (single-nucleotide polymorphisms; p < 5 × 10-8) of VAT accumulation based on genome-wide association studies (GWASs). Longevity was defined as an age beyond the 90th or 99th survival percentile. The causal association of VAT accumulation with longevity was estimated with the inverse variance-weighted (IVW) method. Sensitivity analyses, including weighted median, MR-Egger, and MR-pleiotropy residual sum and outlier (PRESSO), were also employed to assess the stability of the IVW results. Results: Our MR analysis used 221 genetic variants as instrumental variables to explore the causal association between VAT accumulation and longevity. In the standard IVW methods, VAT accumulation (per 1-kg increase) was found to be significantly associated with lower odds of surviving to the 90th (odds ratio [OR] = 0.69; 95% confidence interval [CI] 0.55 to 0.86, p = 8.32 × 10-4) and 99th (OR = 0.67; 95% CI 0.49 to 0.91, p = 0.011) percentile ages. These findings remained stable in sensitivity analysis. Conclusion: This MR analysis identified a causal relationship between genetically determined VAT accumulation and longevity, suggesting that visceral adiposity may have a negative effect on longevity.

2.
Int J Biol Macromol ; 190: 433-440, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34481853

RESUMO

The growth and reproduction of microorganisms can cause food spoilage in the process of food transportation and storage. Active packaging is a good way to inhibit food spoilage and prolong the shelf lives of foods. In this study, O/W Pickering emulsion with ZnO nanoparticles as solid particles and oregano essential oil as the oil phase was prepared and used to functionalize cellulose nanofibrils (CNFs) film, and excellent antimicrobial and antioxidant activity was obtained. When the concentration of ZnO nanoparticles was 1.5 wt% and the mass fraction of the oil phase was 20%, the Pickering emulsion with a particle size of 26.85 µm exhibited strong standing stability. The Pickering emulsion was blended with the film-forming matrix CNFs to prepare active packaging films by casting. The Pickering emulsion evenly dispersed in the film to form microcapsules which encapsulated oregano essential oil entirely. The antimicrobial activity against Listeria monocytogenes was 89.61%, the DPPH radical scavenging rate was 58.52%, while the barrier properties of the developed films against oxygen, water vapor and visible light were improved. The active CNFs film prepared by Pickering emulsion could inhibit the growth of microorganism and prolong the shelf lives of foods.

3.
Ecotoxicol Environ Saf ; 225: 112748, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34488143

RESUMO

Saline-alkali land is distributed all over the world, and it affects the economic development of fisheries. The alkalinity in water is related to the accumulation of carbonate, so the is generally higher. To understand how alkalinity impacts the immune response in Luciobarbus capito, we performed transcriptomic profiles for spleen, the immune organ of Luciobarbus capito which were underwent alkalinity exposure. Totally there are 47,727,954, 53,987,820 and 51,398,546 high quality clean reads obtained from the control groups, and 46,996,982, 49,650,460 and 45,964,986 clean reads from the alkalinity exposure groups. Among them, 611 genes were differently expressed, including 534 upregulated and 77 down-regulated genes. The identified genes were enriched using databases of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). It was found that differentially expressed genes in Luciobarbus capito spleen tissue were enriched into 14 GO pathways, and differentially expressed genes in Luciobarbus capito spleen were enriched into 25 corresponding KEGG pathways under alkalinity stress. Inflammation and immune function genes and pathways were identified and validated by quantitative real-time RT-PCR. Our results showed that alkalinity exposure leads to inflammation and immunoregulation in spleen of Luciobarbus capito. These results provide new insights for unveiling the biological effects of alkalinity in Luciobarbus capito.

4.
J Am Chem Soc ; 143(37): 15145-15151, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494833

RESUMO

Rapid and specific identification of tumor metabolic markers is of great significance. Herein, a convenient, reliable and specific strategy was proposed to screen prostate cancer (PCa) individuals through indirectly quantifying sarcosine, an early indicator of PCa, in the clinical urine samples. The success roots in the rational design of a cascade response model, which takes integrated sarcosine oxidase (SOX) as a specific recognition unit and oxygen-sensitive molecule as a signal reporter. The newly developed hierarchical mesoporous Zr-based metal-organic frameworks with continuously tunable mesopore size ensure the synergetic work of the SOX and response unit spatially separated in their neighboring mesoporous and microporous domains, respectively. The large mesopore up to 12.1 nm not only greatly enhances the loading capacity of SOX but also spares enough space for the free diffusion of sarcosine. On this basis, the probe is competent to specifically check out the tiny concentration change of sarcosine in the urine sample between PCa patients and healthy humans. Such a concept of enzyme-assisted substrate sensing could be simply extended by altering the type of immobilized enzymes, hopefully setting a guideline for the rational design of multiple probes to quantify specific biomarkers in complex biological samples.

5.
Aging (Albany NY) ; 13(17): 21134-21141, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496349

RESUMO

As a systemic disease, osteoporosis (OP) results in bone density loss and fracture risk, particularly in the hip and vertebrae. However, the underlying molecular mechanisms of OP development have not been fully illustrated. N6-Methyladenosine (m6A) is the most abundant modification of mRNAs, which is involved in many of pathological processes in aging disease. However, its role and regulatory mechanism in OP remains unknown. Here, we aimed to investigate the roles of m6A and its demethylase FTO in OP development. The results showed that m6A methylated RNA level was up-regulated in the bone marrow mesenchymal stem cells (BMSCs) from patients with OP. The level of N6-methyladenosine demethylase FTO was consistently decreased in the BMSCs from patients with OP. Functionally, lentivirus-mediated FTO overexpression in normal BMSCs to compromised osteogenic potential. Mechanism analysis further suggested that FTO overexpression decreased the m6A methylated and total level of runt related transcription factor 2 (Runx2) mRNA, subsequently inhibited osteogenic differentiation. We found that FTO inhibition could effectively improve the bone formation in ovariectomized osteoporotic mice in vivo. Together, these results reveal that RNA N6-methyladenosine demethylase FTO promotes osteoporosis through demethylating runx2 mRNA and inhibiting osteogenic differentiation.

6.
Biosens Bioelectron ; 193: 113606, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34507206

RESUMO

Non-enzymatic glucose sensors outperform enzymatic ones in terms of cost, sensitivity, stability, and operating duration. Though highly sensitive, it is still desirable to further improve the sensitivity of non-enzymatic glucose sensors to detect a trace amount of glucose in sweat and other biofluids. Among the demonstrated effective approaches using bimetals or 3D porous structures, the porous laser-induced graphene (LIG) on flexible polymers showcases good conductivity and a simple fabrication process for the integration of sensing materials. The uniform electroless plating of the nickel and gold layer on LIG electrodes demonstrates significantly enhanced sensitivity and a large linear range for glucose sensing. The sensor with the porous LIG foam exhibits a high sensitivity of 1080 µA mM-1 cm-2, whereas a further increased sensitivity of 3500 µA mM-1 cm-2 is obtained with LIG fibers (LIGF). Impressively, a large linear range (0-30 mM) can be achieved by changing the bias voltage from 0.5 to 0.1 V due to the Au coating. Because the existing non-enzymatic glucose sensors are limited to use in basic solutions, their application in wearable electronics is elusive. In addition to the reduced requirement for the basic solution, this work integrates a porous encapsulating reaction cavity containing alkali solutions with a soft, skin-interfaced microfluidic component to provide integrated microfluidic non-enzymatic glucose sensors for sweat sampling and glucose sensing. The accurate glucose measurements from the human sweat and cell culture media showcase the practical utility, which opens up opportunities for the non-enzymatic glucose sensors in wearable electronics.

8.
J Pathol ; 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34467534

RESUMO

The mevalonate pathway is essential for cholesterol biosynthesis. Previous studies have suggested that the key enzyme in this pathway, farnesyl diphosphate synthase (FDPS), regulates the cardiovascular system. We used human samples and mice that were deficient in cardiac FDPS (c-Fdps-/- mice) to investigate the role of FDPS in cardiac homeostasis. Cardiac function was assessed using echocardiography. Left ventricles were examined and tested for histological and molecular markers of cardiac remodeling. Our results showed that FDPS levels were downregulated in samples from patients with cardiomyopathy. Furthermore, c-Fdps-/- mice exhibited cardiac remodeling and dysfunction. This dysfunction was associated with abnormal activation of Ras and Rheb, which may be due to the accumulation of geranyl pyrophosphate. Activation of Ras and Rheb stimulated downstream mTOR and ERK pathways. Moreover, administration of farnesyltransferase inhibitors attenuated cardiac remodeling and dysfunction in c-Fdps-/- mice. These results indicate that FDPS plays an important role in cardiac homeostasis. Deletion of FDPS stimulates the downstream mTOR and ERK signaling pathways, resulting in cardiac remodeling and dysfunction. This article is protected by copyright. All rights reserved.

9.
IEEE Trans Image Process ; 30: 7878-7888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478364

RESUMO

It is theoretically insufficient to construct a complete set of semantics in the real world using single-modality data. As a typical application of multi-modality perception, the audio-visual event localization task aims to match audio and visual components to identify the simultaneous events of interest. Although some recent methods have been proposed to deal with this task, they cannot handle the practical situation of temporal inconsistency that is widespread in the audio-visual scene. Inspired by the human system which automatically filters out event-unrelated information when performing multi-modality perception, we propose a discriminative cross-modality attention network to simulate such a process. Similar to human mechanism, our network can adaptively select "where" to attend, "when" to attend and "which" to attend for audio-visual event localization. In addition, to prevent our network from getting trivial solutions, a novel eigenvalue-based objective function is proposed to train the whole network to better fuse audio and visual signals, which can obtain discriminative and nonlinear multi-modality representation. In this way, even with large temporal inconsistency between audio and visual sequence, our network is able to adaptively select event-valuable information for audio-visual event localization. Furthermore, we systemically investigate three subtasks of audio-visual event localization, i.e., temporal localization, weakly-supervised spatial localization and cross-modality localization. The visualization results also help us better understand how our network works.

10.
J Hazard Mater ; 416: 126221, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492976

RESUMO

Microplastics (MPs) are a widespread pollutant in terrestrial ecosystems. However, knowledge on how MPs impact soil organic matter (SOM) decomposition and the priming effect (PE) in rice paddy soil remains limited. By employing a three-source-partitioning approach, we investigated the interactive impact of MP dosage (none, low [0.01% w/w] or high [1% w/w]), labile C (14C-labeled glucose), and 13C-labeled rice straw addition on SOM decomposition and PE. Compared to soil without C addition (i.e., control), total SOM-derived CO2 in low-MP soil declined by 13.2% and 7.1% after straw and glucose addition, respectively. Under combined glucose and rice straw addition, glucose-induced PE was up to 10 times stronger in the presence of low-MPs compared to that in high-MPs. However, glucose induced negative PE on rice straw decomposition in the presence of MPs. SOM decomposition was much higher under low MP dosage than under high MP dosage. However, MPs had a negligible effect on the mineralization of exogenous C substrate (glucose or straw). This study provides a novel and valuable insight on how MPs affect SOM turnover and C sequestration in paddy soil, highlighting the significance of interactions between environmental pollutants and biogeochemical processes that affect CO2 fluxes.


Assuntos
Oryza , Solo , Carbono , Ecossistema , Microplásticos , Plásticos , Microbiologia do Solo
12.
Am J Chin Med ; : 1-22, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488551

RESUMO

Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.

13.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3877-3885, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472263

RESUMO

Twenty-six compounds, including sixteen meroterpenoids(1-16), a triterpenoid(17), four terpenoid derivatives(18-21), and five aromatic compounds(22-26), were isolated from the leaves of Psidium guajava. Their structures were identified by spectroscopic analyses including NMR and MS. Compounds 21-26 were obtained from plants of Psidium for the first time. Based on the structure,(R)-2-ethylhexyl 2H-1,2,3-triazole-4-carboxylate(24 a), an α-glucosidase inhibitor recently isolated from Paramignya trimera, should be revised as compound 24. Meroterpenoids 1-16 were evaluated for their antitumor and antifungal activities. Meroterpenoids psiguajadial D(4), guapsidial A(5), 4,5-diepipsidial A(7), guadial A(14), and guadial B(15) showed cytotoxicities against five human tumor cell lines(HL-60, A-549, SMMC-7721, MCF-7, and SW-480), among which 5 was the most effective with an IC_(50) of 3.21-9.94 µmol·L~(-1).


Assuntos
Psidium , Antifúngicos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Extratos Vegetais , Folhas de Planta , Terpenos
14.
Cancer Discov ; 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479870

RESUMO

Chronic and low-grade inflammation associated with persistent bacterial infections has been linked to colon tumor development; however, the impact of transient and self-limited infections in bacterially-driven colon tumorigenesis has remained enigmatic. Here we report that UshA is a novel genotoxin in attaching/effacing (A/E) pathogens, which includes the human pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and their murine equivalent Citrobacter rodentium (CR). UshA harbors direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. Injected via the Type III Secretion System (T3SS) into host cells, UshA triggers DNA damage and initiates tumorigenic transformation during infections in vitro and in vivo. Moreover, UshA plays an indispensable role in CR infection-accelerated colon tumorigenesis in genetically susceptible ApcMinΔ716/+ mice. Collectively, our results reveal that UshA, functioning as a bacterial T3SS-dependant genotoxin, plays a critical role in prompting transient and noninvasive bacterial infection-accelerated colon tumorigenesis in mice.

15.
Bull Entomol Res ; : 1-10, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34474693

RESUMO

To explore the characteristics of the mitochondrial genome (mitogenome) of the squeaking silkmoths Rhodinia, a genus of wild silkmoths in the family Saturniidae of Lepidoptera, and reveal phylogenetic relationships, the mitogenome of Rhodinia fugax Butler was determined. This wild silkmoth spins a green cocoon that has potential significance in sericulture, and exhibits a unique feature that its larvae can squeak loudly when touched. The mitogenome of R. fugax is a circular molecule of 15,334 bp long and comprises 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region, consistent with previous observations of Saturniidae species. The 370-bp A + T-rich region of R. fugax contains no tandem repeat elements and harbors several features common to the Bombycidea insects, but microsatellite AT repeat sequence preceded by the ATTTA motif is not present. Mitogenome-based phylogenetic analysis shows that R. fugax belongs to Attacini, instead of Saturniini. This study presents the first mitogenome for Rhodinia genus.

16.
J Biomed Res ; : 1-12, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531333

RESUMO

Posttranscriptional regulation of cancer gene expression programs plays a vital role in carcinogenesis; identifying the critical regulators of tumorigenesis and their molecular targets may provide novel strategies for cancer diagnosis and therapeutics. Highly conserved RNA-binding protein Pumilio-1 (PUM1) regulates mouse growth and cell proliferation, propelling us to examine its role in cancer. We found human PUM1 is highly expressed in a diverse group of cancer, including prostate cancer; enhanced PUM1 expression is also correlated with reduced survival among prostate cancer patients. Detailed expression analysis in twenty prostate cancer tissues showed enhanced expression of PUM1 at mRNA and protein levels. Knockdown of PUM1 reduced prostate cancer cell proliferation and colony formation, and subcutaneous injection of PUM1 knockdown cells led to reduced tumor size. Downregulation of PUM1 in prostate cancer cells consistently elevated cyclin-dependent kinase inhibitor 1B (CDKN1B) protein expression through increased translation but did not impact its mRNA level, while overexpression of PUM1 reduced CDKN1B protein level. Our finding established a critical role of PUM1 mediated translational control, particularly the PUM1-CDKN1B axis, in prostate cancer cell growth and tumorigenesis. We proposed that PUM1-CDKN1B regulatory axis may represent a novel mechanism for the loss of CDKN1B protein expression in diverse cancers and potential targets for therapeutics development.

17.
ACS Chem Neurosci ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519485

RESUMO

Aggregation of amyloid ß-peptide (Aß) is closely related to the pathology of Alzheimer's disease (AD). In this pathology, the beginning stage is characterized by excessive accumulation of Aß monomers due to imbalanced Aß in the process of clearance. The Aß peptide exists in many forms such as soluble and insoluble Aß species, both of which coexist during the progression of AD and contribute to AD pathology. Thus, probes capable of monitoring all Aß species are highly desirable. While there are several fluorescent probes for detecting insoluble Aß, it is still challenging to monitor all Aß forms by using probes. Here, we describe a near-infrared fluorescent chemical probe, termed AD-1, developed through complexation of curcumin analogues with a stabilizer, which has good photophysical properties and shows high binding to all Aß species in solution tests. Furthermore, AD-1 exhibited good blood-brain barrier penetrating ability and low cytotoxicity. More importantly, it was successfully applied to 4-month-young APP/PS1 mice imaging noninvasively.

18.
Trials ; 22(1): 566, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34521466

RESUMO

BACKGROUND: Non-alcohol fatty liver disease (NAFLD) is the most common chronic liver disease in the world, with a high incidence and no effective treatment. At present, the targeted therapy of intestinal microbes for NAFLD is highly valued. Lycium barbarum polysaccharide (LBP), as the main active ingredient of Lycium barbarum, is considered to be a new type of prebiotic substance, which can improve NAFLD by regulating the gut microbiota. The purpose of this study is to evaluate the safety and efficacy of LBP supplementation in modulating gut microbiota for NAFLD patients. METHODS: This randomized, double-blind, placebo-control study will be conducted in the physical examination center of the Ningxia Hui Autonomous Region People's Hospital. A total of 50 patients with NAFLD confirmed by abdominal ultrasound, laboratory tests, and questionnaire surveys will be recruited and randomly assigned into the control group (maltodextrin placebo capsules) and the intervention group (LBP supplementation capsules) for 3 months. Neither patients, nor investigators, nor data collectors will know the contents in each capsule and the randomization list. The primary outcome measure is the level of ALT concentration relief after the intervention. Secondary outcomes include gut microbiota abundance and diversity, intestinal permeability, patient's characteristic demographic data and body composition, adverse effects, and compliance from patients. DISCUSSION: LBPs are potential prebiotics with the property of regulating host gut microbiota. Our previous studies have documented that LBP supplement can improve the liver damage and the gut microflora dysbiosis in NAFLD rats. This treatment would provide a more in-depth understanding of the effect of this LBP supplementation. TRIAL REGISTRATION: Chinese Clinical Trial Register, ChiCTR2000034740 . Registered on 17 July 2020.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Suplementos Nutricionais , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos
19.
Environ Pollut ; 291: 118128, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34530244

RESUMO

Previous studies have mostly focused on using visible-to-near-infrared spectral technique to quantitatively estimate soil cadmium (Cd) content, whereas little attention has been paid to identifying soil Cd contamination from a perspective of spectral classification. Here, we developed a framework to compare the potential of two spectral transformations (i.e., raw reflectance and continuum removal [CR]), three optimization strategies (i.e., full-spectrum, Boruta feature selection, and synthetic minority over-sampling technique [SMOTE]), and three classification algorithms (i.e., partial least squares discriminant analysis, random forest [RF], and support vector machine) for diagnosing soil Cd contamination. A total of 536 soil samples were collected from urban and suburban areas located in Wuhan City, China. Specifically, Boruta and SMOTE strategies were aimed at selecting the most informative predictors and obtaining balanced training datasets, respectively. Results indicated that soils contaminated by Cd induced decrease in spectral reflectance magnitude. Classification models developed after Boruta and SMOTE strategies out-performed to those from full-spectrum. A diagnose model combining CR preprocessing, SMOTE strategy, and RF algorithm achieved the highest validation accuracy for soil Cd (Kappa = 0.74). This study provides a theoretical reference for rapid identification of and monitoring of soil Cd contamination in urban and suburban areas.

20.
Plant Cell Environ ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550608

RESUMO

The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po). In this study, the expression, enzymatic activity and subcellular localization of ACID PHOSPHATASE 1 (OsACP1) were determined. OsACP1 expression is specifically induced in almost all cell types of leaves and roots under Pi stress conditions. OsACP1 encodes an acid phosphatase with broad Po substrates and localizes in the endoplasmic reticulum (ER) and Golgi apparatus (GA). Phylogenic analysis demonstrates that OsACP1 has a similar structure with human acid phosphatase PHOSPHO1. Overexpression or mutation of OsACP1 affected Po degradation and utilization, which further influenced plant growth and productivity under both Pi-sufficient and Pi-deficient conditions. Moreover, overexpression of OsACP1 significantly affected intracellular Pi homeostasis and Pi starvation signalling. We concluded that OsACP1 is an active acid phosphatase that regulates rice growth under Pi stress conditions by recycling Pi from Po in the ER and GA. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...