Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.501
Filtrar
1.
Mol Cell ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955180

RESUMO

During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.

2.
Food Chem ; 458: 140187, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38950510

RESUMO

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.

3.
RSC Adv ; 14(29): 20799-20808, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38952941

RESUMO

Nanoscale covalent organic frameworks (NCOFs) as emerging drug-delivery nanocarriers have received much attention in biomedicine in recent years. However, there are few reports on the application of pH-responsive NCOFs for drug delivery nanosystems. In this work, hydrazone-decorated NCOFs as pH-triggered molecular switches are designed for efficient cancer therapy. These functionalized NCOFs with hydrazone groups on the channel walls (named NCOFs-NHNH2) are obtained via a post-synthetic modification strategy. Subsequently, the anticancer drug doxorubicin (DOX) as the model molecule is loaded through covalent linkage to yield NCOFs-NN-DOX. Finally, soybean phospholipid (SP) is coated on the surface of HNTs-NN-DOX, named NCOFs-NN-DOX@SP, to further enhance the dispersibility, stability and biocompatibility of HNTs in physiological solution. NCOFs-NN-DOX@SP showed an excellent and intelligent sustained-release effect with an almost sixfold increase at pH = 5.2 than at pH = 7.4. In vitro cell toxicity and imaging assays of NCOFs-NN-DOX@SP exhibited an enhanced therapeutic effect on Lewis lung carcinoma (LLC) cells, demonstrating that the fabricated NCOFs have a great potential in cancer therapy. Thus, this work provides a new way toward designing stimulus-responsive functionalized NCOFs and promotes their potential application as an on-demand drug delivery system in the field of cancer treatment.

4.
Heliyon ; 10(11): e32454, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961944

RESUMO

Background: Septic shock is a clinical syndrome characterized by the progression of sepsis to a severe stage. Elderly patients with urosepsis in the intensive care unit (ICU) are more likely to progress to septic shock. This study aimed to establish and validate a nomogram model for predicting the risk of progression to septic shock in elderly patients with urosepsis. Methods: We extracted data from the Medical Information Mart for Intensive Care (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). The MIMIC-IV dataset was split into a training set for model development and an internal validation set to assess model performance. Further external validation was performed using a distinct dataset sourced from the eICU-CRD. Predictors were screened using least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analyses. The evaluation of model performance included discrimination, calibration, and clinical usefulness. Results: The study demonstrated that the Glasgow Coma Scale (GCS), white blood count (WBC), platelet, blood urea nitrogen (BUN), calcium, albumin, congestive heart failure (CHF), and invasive ventilation were closely associated with septic shock in the training cohort. Nomogram prediction, utilizing eight parameters, demonstrated strong predictive accuracy with area under the curve (AUC) values of 0.809 (95 % CI 0.786-0.834), 0.794 (95 % CI 0.756-0.831), and 0.723 (95 % CI 0.647-0.801) in the training, internal validation, and external validation sets, respectively. Additionally, the nomogram demonstrated a promising calibration performance and significant clinical usefulness in both the training and validation sets. Conclusion: The constructed nomogram is a reliable and practical tool for predicting the risk of progression to septic shock in elderly patients with urosepsis. Its implementation in clinical practice may enhance the early identification of high-risk patients, facilitate timely and targeted interventions to mitigate the risk of septic shock, and improve patient outcomes.

5.
J Environ Sci (China) ; 146: 272-282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969455

RESUMO

Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.


Assuntos
Biomassa , Chlorella , Nitrogênio , Fotobiorreatores , Eliminação de Resíduos Líquidos , Nitrogênio/metabolismo , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eutrofização
6.
Med ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38991598

RESUMO

BACKGROUND: Serologically active clinically quiescent (SACQ) is a state within systemic lupus erythematosus (SLE) characterized by elevated serologic markers without clinical activity. The heterogeneity in SACQ patients poses challenges in disease management. This multicenter prospective study aimed to identify distinct SACQ subgroups and assess their utility in predicting organ damage. METHODS: SACQ was defined as a sustained period of at least 6 months with persistent serologic activity, marked by positive anti-double-stranded DNA (dsDNA) antibodies and/or hypocomplementemia, and without clinical activity. Cluster analysis was employed, utilizing 16 independent components to delineate phenotypes. FINDINGS: Among the 4,107 patients with SLE, 990 (24.1%) achieved SACQ within 2.0 ± 2.3 years on average. Over a total follow-up of 7,105.1 patient years, 340 (34.3%) experienced flares, and 134 (13.5%) developed organ damage. Three distinct SACQ subgroups were identified. Cluster 1 (n = 219, 22.1%) consisted predominantly of elderly males with a history of major organ involvement at SLE diagnosis, showing the highest risk of severe flares (16.4%) and organ damage (27.9%). Cluster 2 (n = 279, 28.2%) was characterized by milder disease and a lower risk of damage accrual (5.7%). Notably, 86 patients (30.8%) in cluster 2 successfully discontinued low-dose glucocorticoids, with 49 of them doing so without experiencing flares. Cluster 3 (n = 492, 49.7%) featured the highest proportion of lupus nephritis and a moderate risk of organ damage (11.8%), with male patients showing significantly higher risk of damage (hazard ratio [HR] = 4.51, 95% confidence interval [CI], 1.82-11.79). CONCLUSION: This study identified three distinct SACQ clusters, each with specific prognostic implications. This classification could enhance personalized management for SACQ patients. FUNDING: This work was funded by the National Key R&D Program (2021YFC2501300), the Beijing Municipal Science & Technology Commission (Z201100005520023), the CAMS Innovation Fund (2021-I2M-1-005), and National High-Level Hospital Clinical Research Funding (2022-PUMCH-D-009).

8.
Front Immunol ; 15: 1351945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994368

RESUMO

Background: Left ventricular hypertrophy (LVH) is a common consequence of hypertension and can lead to heart failure. The immune response plays an important role in hypertensive LVH; however, there is no comprehensive method to investigate the mechanistic relationships between immune response and hypertensive LVH or to find novel therapeutic targets. This study aimed to screen hub immune-related genes involved in hypertensive LVH as well as to explore immune target-based therapeutic drugs. Materials and methods: RNA-sequencing data from a mouse model generated by angiotensin II infusion were subjected to weighted gene co-expression network analysis (WGCNA) to identify core expression modules. Machine learning algorithms were applied to screen immune-related LVH characteristic genes. Heart structures were evaluated by echocardiography and cardiac magnetic resonance imaging (CMRI). Validation of hub genes was conducted by RT-qPCR and western blot. Using the Connectivity Map database and molecular docking, potential small-molecule drugs were explored. Results: A total of 1215 differentially expressed genes were obtained, most of which were significantly enriched in immunoregulation and collagen synthesis. WGCNA and multiple machine learning strategies uncovered six hub immune-related genes (Ankrd1, Birc5, Nuf2, C1qtnf6, Fcgr3, and Cdca3) that may accurately predict hypertensive LVH diagnosis. Immune analysis revealed that fibroblasts and macrophages were closely correlated with hypertensive LVH, and hub gene expression was significantly associated with these immune cells. A regulatory network of transcription factor-mRNA and a ceRNA network of miRNA-lncRNA was established. Notably, six hub immune-related genes were significantly increased in the hypertensive LVH model, which were positively linked to left ventricle wall thickness. Finally, 12 small-molecule compounds with the potential to reverse the high expression of hub genes were ruled out as potential therapeutic agents for hypertensive LVH. Conclusion: This study identified and validated six hub immune-related genes that may play essential roles in hypertensive LVH, providing new insights into the potential pathogenesis of cardiac remodeling and novel targets for medical interventions.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Animais , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/etiologia , Camundongos , Hipertensão/genética , Hipertensão/tratamento farmacológico , Hipertensão/imunologia , Masculino , Modelos Animais de Doenças , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica
9.
Neuroscience ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964453

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by mutant ataxin-3 with an abnormally expanded polyQ tract and is the most common dominantly inherited ataxia worldwide. There are no suitable therapeutic options for this disease. Autophagy, a defense mechanism against the toxic effects of aggregation-prone misfolded proteins, has been shown to have beneficial effects on neurodegenerative diseases. Thus, trehalose, which is an autophagy inducer, may have beneficial effects on SCA3. In the present study, we examined the effects of trehalose on an SCA3 cell model. After trehalose treatment, aggregate formation, soluble ataxin-3 protein levels and cell viability were evaluated in HEK293T cells overexpressing ataxin-3-15Q or ataxin-3-77Q. We also explored the mechanism by which trehalose affects autophagy and stress pathways. A filter trap assay showed that trehalose decreased the number of aggregates formed by mutant ataxin-3 containing an expanded polyQ tract. Western blot and Cell Counting Kit-8 (CCK-8) results demonstrated that trehalose also reduced the ataxin-3 protein levels and was safe for ataxin-3-expressing cells, respectively. Western blot and total antioxidant capacity assays suggested that trehalose had great therapeutic potential for treating SCA3, likely through its antioxidant activity. Our data indicate that trehalose plays a neuroprotective role in SCA3 by inhibiting the aggregation and reducing the protein level of ataxin-3, which is also known to protect against oxidative stress. These findings provide a new insight into the possibility of treating SCA3 with trehalose and highlight the importance of inducing autophagy in SCA3.

10.
PLoS One ; 19(7): e0306518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980862

RESUMO

OBJECTIVE: To evaluate the effects of Tai Chi in the treatment of patients with chronic low back pain by Meta-analysis and to investigate its influencing factors. METHODS: The study searched eight databases (PubMed, Embase, The Cochrane Library, Web of Science, China Knowledge Network, Wanfang, VIP, and CBM) from inception to October 2023. Two investigators independently selected 10 eligible randomized controlled trials (RCT) against inclusion and exclusion criteria, followed by data extraction and study quality assessment by ROB 2. The outcomes of interest were pain intensity and disability. The studies were combined using meta-analysis when statistical pooling of data was possible. The quality of the evidence was assessed using the GRADE approach. RESULTS: 10 randomized controlled studies with a total sample of 886 cases were included, of which 4 (40%) were assessed as low risk of bias. The effect size of Tai Chi for chronic low back pain was [Weighted Mean Difference (WMD) with 95% Confidence Interval (CI) = -1.09 (-1.26, -0.92), p < 0.01], all achieving large effect sizes and statistically significant; the effect size for disability was [Standard Mean Difference (SMD) with 95% CI = -1.75 (-2.02, -1.48), p < 0.01], and the combined effect sizes of physical health and mental health for quality of life were [WMD (95% CI) = 4.18 (3.41, 4.95), p < 0.01; WMD (95% CI) = 3.23 (2.42, 4.04), p < 0.01] respectively. The incidence of adverse reactions was low. Meta regression and subgroup analysis showed that there was no significant effect on intervention measures (Tai Chi alone, Tai Chi as additional therapy, water Tai Chi), Tai Chi school (Chen and Yang) and the number of total intervention sessions (> 30 and ≤ 30). The evidence quality evaluation showed that the evidence of pain, physical health of quality of life and mental health score was medium quality, while the evidence of disability and adverse reactions was low quality. CONCLUSIONS: Tai Chi has an obvious effect of in relieving chronic low back pain. Tai Chi alone and Tai Chi as supplementary therapy have good effects. Tai Chi in water have not been verified. Chen style Tai Chi and Yang's Tai Chi, intervention more than 30 times or less than 30 times had no significant difference in the effect of intervention on CLBP.


Assuntos
Dor Crônica , Dor Lombar , Tai Chi Chuan , Dor Lombar/terapia , Humanos , Dor Crônica/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Qualidade de Vida
11.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000358

RESUMO

The Chinese mitten crab (Eriocheir sinensis), an economically important crustacean that is endemic to China, has recently experienced high-temperature stress. The high thermal tolerance of E. sinensis points to its promise in being highly productive in an aquacultural context. However, the mechanisms underlying its high thermal tolerance remain unknown. In this study, female E. sinensis that were heat exposed for 24 h at 38.5 °C and 33 °C were identified as high-temperature-stressed (HS) and normal-temperature-stressed (NS) groups, respectively. The hepatopancreas of E. sinensis from the HS and NS groups were used for transcriptome and proteomic analyses. A total of 2350 upregulated and 1081 downregulated differentially expressed genes (DEGs) were identified between the HS and NS groups. In addition, 126 differentially expressed proteins (DEPs) were upregulated and 35 were downregulated in the two groups. An integrated analysis showed that 2641 identified genes were correlated with their corresponding proteins, including 25 genes that were significantly differentially expressed between the two omics levels. Ten Gene Ontology terms were enriched in the DEGs and DEPs. A functional analysis revealed three common pathways that were significantly enriched in both DEGs and DEPs: fluid shear stress and atherosclerosis, leukocyte transendothelial migration, and thyroid hormone synthesis. Further analysis of the common pathways showed that MGST1, Act5C, HSP90AB1, and mys were overlapping genes at the transcriptome and proteome levels. These results demonstrate the differences between the HS and NS groups at the two omics levels and will be helpful in clarifying the mechanisms underlying the thermal tolerance of E. sinensis.


Assuntos
Braquiúros , Resposta ao Choque Térmico , Hepatopâncreas , Proteoma , Transcriptoma , Animais , Feminino , Hepatopâncreas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/fisiologia , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Proteômica/métodos , Ontologia Genética , Regulação da Expressão Gênica
12.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001101

RESUMO

With the development of technology, people's demand for pressure sensors with high sensitivity and a wide working range is increasing. An effective way to achieve this goal is simulating human skin. Herein, we propose a facile, low-cost, and reproducible method for preparing a skin-like multi-layer flexible pressure sensor (MFPS) device with high sensitivity (5.51 kPa-1 from 0 to 30 kPa) and wide working pressure range (0-200 kPa) by assembling carbonized fabrics and micro-wrinkle-structured Ag@rGO electrodes layer by layer. In addition, the highly imitated skin structure also provides the device with an extremely short response time (60/90 ms) and stable durability (over 3000 cycles). Importantly, we integrated multiple sensor devices into gloves to monitor finger movements and behaviors. In summary, the skin-like MFPS device has significant potential for real-time monitoring of human activities in the field of flexible wearable electronics and human-machine interaction.


Assuntos
Fibra de Algodão , Pressão , Dispositivos Eletrônicos Vestíveis , Humanos , Fibra de Algodão/análise , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Eletrodos , Pele , Têxteis , Atividades Humanas
13.
J Ethnopharmacol ; 334: 118524, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971344

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, the flower of Rhododendron molle G. Don (RMF) is record in the Chinese pharmacopoeia, and is commonly utilized for treating rheumatoid arthritis (RA) in clinical practice. However, its precise mechanisms necessitate further exploration. AIM OF THE STUDY: To expound the effective components, targets, metabolites, and pathways participated in RMF's anti-RA effects by metabolomics integrated network pharmacology. MATERIALS AND METHODS: CIA rats were intragastric administered RMF for 2 weeks, following which the therapeutic effects were comprehensively evaluated. Serum metabolomics was adopted to investigate the differential metabolites (DEMs). UHPLC-Q-Exactive-MS method was applied to identify the components of RMF, and then network pharmacology was utilize to select the component-RA-targets. Molecular docking and Western blotting were utilized to validate the key targets. RESULTS: RA symptoms were alleviated by RMF through the inhibition secretion of pro-inflammatory factors IL-1ß, IL-6 and TNF-α, along with relief in bone destruction observed in CIA rats. Four targets, namely AKR1B1, TPH1, CYP1A1, and CYP1A2, were identified, along with their corresponding metabolites, namely D-glucose, D-mannose, L-tryptophan, 11-deoxycorticosterone, and 17α-hydroxyprogesterone. These were found to be involved in three key metabolic pathways: steroid hormone biosynthesis, tryptophan metabolism, and galactose metabolism. Additionally, five significant anti-RA active components were identified from RMF, including Rhodojaponin (Rj)-Ⅱ, Rj-Ⅲ, Rj-Ⅴ, Rj-Ⅵ, and quercetin. CONCLUSIONS: The anti-RA mechanisms of RMF were investigated in this study, focusing on active components, upstream targets, and downstream metabolites. These findings lay a foundation for the clinical practice and drug development of RMF.

14.
J Youth Adolesc ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014157

RESUMO

Attachment in emerging adults is closely intertwined with emotion regulation, stress coping, and social bonding during the transition from childhood to early adulthood. Due to the critical roles of serotonin in these mental functions, this research explored whether the cumulative genetic effects of serotonergic polymorphisms are associated with individual differences and contextual variations in attachment dimensions over time in emerging adults. Study 1 utilized a cross-sectional design in college students (N = 1088, mean age = 22.71 ± 2.86 years). The results showed significant correlations between a higher cumulative genetic score and elevated levels of attachment anxiety and avoidance. Study 2 employed a three-wave longitudinal design in a cohort of freshmen (N = 523, mean age = 19.54 ± 1.86 years at wave 1). The results demonstrated that a higher genetic score was associated with both higher levels and greater variability in attachment dimensions compared to a lower genetic score. These findings suggest that the cumulative genetic effects of serotonergic polymorphisms contribute to individual differences and dynamic processes in attachment dimensions in emerging adults.

15.
Infect Drug Resist ; 17: 2975-2985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045108

RESUMO

Objective: We aimed to investigate dysregulated metabolic pathways and identify diagnostic and therapeutic targets in patients with tuberculosis-diabetes (TB-DM). Methods: In our prospective cohort study, plasma samples were collected from healthy individuals, diabetic (DM) patients, untreated TB-only (TB-0)/TB-DM patients (TB-DM-0), and cured TB (TB-6)/TB-DM patients (TB-DM-6) to measure the levels of amino acids, fatty acids, and other metabolites in plasma using high-throughput targeted quantification methods. Results: Significantly different biological processes and biomarkers were identified in DM, TB-DM-0, and TB-DM-6 patients. Moreover, quinolinic acid (QA) showed excellent predictive accuracy for distinguishing between DM patients and TB-DM-0 patients, with an AUC of 1 (95% CI 1-1). When differentiating between TB-DM-0 patients and TB-DM-6 patients, the AUC was 0.9297 (95% CI 0.8460-1). Compared to those in DM patients, the QA levels were significantly elevated in TB-DM-0 patients and decreased significantly after antituberculosis treatment. We simultaneously compared healthy controls and untreated tuberculosis patients and detected an increase in the level of QA in the plasma of tuberculosis patients, which decreased following treatment. Conclusion: These findings improve the current understanding of tuberculosis treatment in patients with diabetes. QA may serve as an ideal diagnostic biomarker for TB-DM patients and contribute to the development of more effective treatments.

16.
RSC Adv ; 14(32): 23204-23214, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39045398

RESUMO

Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.

17.
Anal Methods ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046449

RESUMO

Extracellular vesicles (EVs) have attracted great interest due to their great potential in disease diagnosis and therapy. The separation of EVs from complex biofluids with high purity is essential for the accurate analysis of EVs. Despite various methods, there is still no consensus on the best method for high-quality EV isolation and reliable mass production. Therefore, it is important to offer a standardized method for characterizing the properties (size distribution, particle concentration and purity) of EV preparations from different isolation methods. Herein, we employed a NanoCoulter Counter based on the resistive pulse sensing (RPS) strategy that enabled multi-parameter analysis of single EVs to compare the quality and efficiency of different EV isolation techniques including traditional differential ultracentrifugation, ultrafiltration, size exclusion chromatography, membrane affinity binding and polymer precipitation. The data revealed that the NanoCoulter Counter based on the RPS strategy was reliable and effective for the characterization of EVs. The results suggested that although higher particle concentrations were observed in three commercial isolation kits and ultrafiltration, traditional differential ultracentrifugation showed the highest purity. In conclusion, our results from the NanoCoulter Counter provided reliable evidence for the assessment of different EV isolation methods, which contributed to the development of EV-based disease biomarkers and treatments.

19.
BMC Pediatr ; 24(1): 468, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039462

RESUMO

BACKGROUND: Idiopathic short stature (ISS) is characterized by short stature with unknown causes. Recent studies showed different gut microbiota flora and reduced fecal short-chain fatty acids in ISS children. However, the roles of the microbiome and metabolites in the pathogenesis of ISS remains largely unknown. METHODS: We recruited 51 Chinese subjects, comprising 26 ISS children and 25 normal-height control individuals. Untargeted metabolomics was performed to explore the fecal metabolic profiles between groups. A shotgun metagenomic sequencing approach was used to investigate the microbiome at the strains level. Mediation analyses were done to reveal correlations between the height standard deviation (SD) value, the gut microbiome and metabolites. RESULTS: We detected marked differences in the composition of fecal metabolites in the ISS group, particularly a significant increase in erucic acid and a decrease in spermidine, adenosine and L-5-Hydroxytryptophan, when compared to those of controls. We further identified specific groups of bacterial strains to be associated with the different metabolic profile. Through mediation analysis, 50 linkages were established. KEGG pathway analysis of microbiota and metabolites indicated nutritional disturbances. 13 selected features were able to accurately distinguish the ISS children from the controls (AUC = 0.933 [95%CI, 79.9-100%]) by receiver operating characteristic (ROC) analysis. CONCLUSION: Our study suggests that the microbiome and the microbial-derived metabolites play certain roles in children's growth. These findings provide a new research direction for better understanding the mechanism(s) underlying ISS.


Assuntos
Fezes , Microbioma Gastrointestinal , Humanos , Criança , Masculino , Feminino , Fezes/microbiologia , Estudos de Casos e Controles , Adolescente , Estatura , Transtornos do Crescimento/microbiologia , Transtornos do Crescimento/metabolismo , Metabolômica/métodos , Metaboloma
20.
Foods ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998514

RESUMO

Poultry is a source of meat that is in great demand in the world. The quality of meat is an imperative point for shoppers. To explore the genes controlling meat quality characteristics, the growth and meat quality traits and muscle transcriptome of two indigenous Yunnan chicken breeds, Wuding chickens (WDs) and Daweishan mini chickens (MCs), were compared with Cobb broilers (CBs). The growth and meat quality characteristics of these two indigenous breeds were found to differ from CB. In particular, the crude fat (CF), inosine monophosphate content, amino acid (AA), and total fatty acid (TFA) content of WDs were significantly higher than those of CBs and MCs. In addition, it was found that MC pectoralis had 420 differentially expressed genes (DEGs) relative to CBs, and WDs had 217 DEGs relative to CBs. Among them, 105 DEGs were shared. The results of 10 selected genes were also confirmed by qPCR. The differentially expressed genes were six enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways including lysosomes, phagosomes, PPAR signaling pathways, cell adhesion molecules, cytokine-cytokine receptor interaction, and phagosome sphingolipid metabolism. Interestingly, four genes (LPL, GK, SCD, and FABP7) in the PPAR signal pathway related to fatty acid (FA) metabolism were elevated in WD muscles, which may account for higher CF, inosine monophosphate content, and AA and FA contents, key factors affecting meat quality. This work laid the foundation for improving the meat quality of Yunnan indigenous chickens, especially WD. In future molecular breeding, the genes in this study can be used as molecular screening markers and applied to the molecular breeding of chicken quality characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA