Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(5): 586-589, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38099675

RESUMO

A metal-chelating membrane was exploited for the facile synthesis of N-doped graphitic carbon fibers (N-CFs) with abundant TM/TMOx nanoparticles completely exposed on the surfaces of the fibers. The ready accessiblity to multiple active sites and strong synergistic effects endowed the Fe/Fe3O4@N-CFs with optimal qualities, in particular delivering enhanced ORR performance in alkaline and neutral medium.

2.
Small ; : e2309493, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072779

RESUMO

Sulfonic acid-containing bioorganic monomers with wide molecular designability and abundant hydrogen bonding sites hold great potential to design diverse functional biocrystals but have so far not been explored for piezoelectric energy harvesting applications due to the lack of strategies to break the centrosymmetry of their assemblies. Here, a significant molecular packing transformation from centrosymmetric into non-centrosymmetric conformation by the addition of an amide terminus in the sulfonic acid-containing bioorganic molecule is demonstrated, allowing a high electromechanical response. The amide-functionalized molecule self-assembles into a polar supramolecular parallel ß-sheet-like structure with a high longitudinal piezoelectric coefficient d11 = 15.9 pm V-1 that produces the maximal open-circuit voltage of >1 V and the maximal power of 18 nW in nanogenerator devices pioneered. By contrast, molecules containing an amino or a cyclohexyl terminus assemble into highly symmetric 3D hydrogen bonding diamondoid-like networks or 2D double layer structures that show tunable morphologies, thermostability, and mechanical properties but non-piezoelectricity. This work not only presents a facile approach to achieving symmetry transformation of bioorganic assemblies but also demonstrates the terminal group and the property correlation for tailor-made design of high-performance piezoelectric biomaterials.

3.
ACS Nano ; 17(20): 19550-19580, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819640

RESUMO

In late 2020, the U.S. Food and Drug Administration (FDA) approved a lipid-based mRNA vaccine for the prevention of COVID-19, which has pushed this field to be more closely studied and motivated researchers to delve deeper into mRNA therapeutics. To date, the research on mRNA cancer vaccines has been developed rapidly, and substantial hopeful therapeutic results have been achieved against various solid tumors in clinical trials. In this review, we first introduce three main components of mRNA cancer vaccines, including mRNA antigens, adjuvants, and delivery vectors. Engineering these components can optimize the therapeutic effects of mRNA cancer vaccines. For instance, appropriate modification of mRNA structure can alleviate the poor stability and innate immunogenicity of mRNA, and the use of mRNA delivery vectors can address the issues of low delivery efficiency in vivo. Second, we emphatically discuss some strategies to further improve the efficacy of mRNA cancer vaccines, namely modulating the immunosuppressive tumor environment, optimizing administration routes, achieving targeting delivery to intended tissues or organs, and employing combination therapy. These strategies can strengthen the tumor inhibitory ability of mRNA cancer vaccines and increase the possibility of tumor elimination. Finally, we point out some challenges in the clinical practice of mRNA cancer vaccines and offer our perspectives on future developments in this rapidly evolving field. It is anticipated that mRNA cancer vaccines will be rapidly developed for clinical cancer therapy in the near future.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Imunoterapia/métodos , RNA Mensageiro/genética
4.
Invest Ophthalmol Vis Sci ; 64(13): 18, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37819742

RESUMO

Purpose: N6-methyladenosine (m6A) is a commonly occurring modification of mRNAs, catalyzed by a complex containing methyltransferase like 3 (METTL3). Our research aims to explore how METTL3-dependent m6A modification affects the functions of retinal endothelial cells (RECs). Methods: An oxygen-induced retinopathy (OIR) mouse model was established, and RECs were isolated using magnetic beads method. Human retinal microvascular endothelial cells (HRMECs) were treated with normoxia (21% O2) or hypoxia (1% O2). Dot blot assay determined m6A modification levels. Quantitative RT-PCR and Western blot detected the mRNA and protein expression levels of the target candidates, respectively. Genes were knocked down by small interfering RNA transfection. Matrigel-based angiogenesis and transwell assays evaluated the abilities of endothelial tube formation and migration, respectively. Methylated RNA immunoprecipitation-qPCR determined the levels of m6A modification in the target genes. Results: The m6A modification levels were significantly upregulated in the retinas and RECs of OIR mice. Exposure to hypoxia significantly elevated both METTL3 expression and m6A modification levels in HRMECs. METTL3 knockdown curtailed endothelial tube formation and migration in vitro under both normoxic and hypoxic conditions. Concurrently, this knockdown in HRMECs resulted in reduced m6A modification levels of MMP2 and TIE2 transcripts, subsequently leading to a decrease in their respective protein expressions. Notably, knockdown of MMP2 and TIE2 also markedly inhibited the angiogenic activities of HRMECs. Conclusions: METTL3-mediated m6A modification promotes the angiogenic behaviors of RECs by targeting MMP2 and TIE2, suggesting its significance in retinal angiogenesis and METTL3 as a potential therapeutic target.


Assuntos
Células Endoteliais , Doenças Retinianas , Humanos , Animais , Camundongos , Metaloproteinase 2 da Matriz/genética , Retina , Hipóxia , Metiltransferases/genética
5.
J Am Chem Soc ; 145(28): 15331-15342, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37392396

RESUMO

Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.


Assuntos
Aminoácidos , Triptofano , Acetilação , Materiais Biocompatíveis , Bismuto
6.
Small ; 19(33): e2303335, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154239

RESUMO

Van der Waals heterojunction (vdWs) of 2D materials with integrated or extended superior characteristics, opening up new opportunities in functional electronic and optoelectric device applications. Exploring methods to achieve multifunctional vdWs heterojunction devices is one of the most promising prospects in this area. Herein, a diverse function of forward rectifying diode, Zener tunneling diode, and backward rectifying diodes are realized in GeAs/ReS2 heterojunction by modulating the doping level of GeAs. The tunneling diode presents an interesting trend forward negative differential resistance (NDR) behavior which may facilitate the application of multi-value logic. More importantly, the GeAs/ReS2 forward rectifying diode exhibits highly sensitive photodetection in the wide-spectrum range up to 1550 nm corresponding to a short-wave infrared (SWIR) region. In addition, as two strong anisotropic 2D materials of GeAs and ReS2 , the heterojunction exhibits strong polarization-sensitive photodetection behavior with a dichroic photocurrent ratio of 1.7. This work provides an effective strategy to achieve multifunctional 2D vdW heterojunction devices and develops more possibilities to broaden their functionalities and applications.

7.
Nanoscale ; 15(21): 9496-9502, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37166342

RESUMO

Violet phosphorene (VP) has an extensive range of potential uses in piezoelectric gadgets due to its excellent electron transport capabilities. Nevertheless, VP materials are devoid of the piezoelectric effect because of the absence of ionic polarity. In this study, the piezoelectric capacity of the VP nano-sheet was investigated. According to the findings, the VP exhibited precise in-plane and out-of-plane piezoelectricity. For both in-plane as well as out-of-plane applications, the monolayer of VP had a characteristic direct piezoelectric reaction, and piezoelectric hysteresis loops were established at an electric field excitation of -18 V to +18 V. According to calculations using the density functional theory, VP has inside inherent dipoles. Outcomes from piezoelectric force microscopy, in particular, for VP with a thickness of 17.6 nm revealed that d33 is up to 12.65 pm V-1 and d31 is up to 1.03 pm V-1. The thickness-relied piezoelectric results demonstrated that VP's piezoelectric capabilities degraded as width increased.

8.
ACS Appl Mater Interfaces ; 15(10): 13281-13289, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857585

RESUMO

Germanium arsenic (GeAs) as a promising two-dimensional (2D) semiconducting material has attracted extensive attention. The high carrier mobility and tunable bandgap of GeAs offer broad prospects in electronic and optoelectronic device-related applications. The unique intrinsic anisotropy arising from the low-symmetry structure can be applied in the design of new devices. However, the rapid degradation of mechanically exfoliated GeAs in the environment poses a challenge to its practical development in scalable devices. Here, an approach to stabilize the sensitive material without isolation from the ambient environment is reported. The graphene capping layer effectively suppresses environmental degradation, enabling the encapsulated GeAs photodetectors to maintain the key electronic properties for more than 3 months under ambient conditions. In addition, the regulation of the work function of graphene significantly improves the device performance. An improved responsivity of 965.07 A/W is 20 times higher than that of pure GeAs. This work provides opportunities for the practical application of GeAs and other environmentally sensitive 2D materials.

9.
Research (Wash D C) ; 6: 0046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930775

RESUMO

Hydrogen bonds are non-covalent interactions and essential for assembling supermolecules into ordered structures in biological systems, endowing crystals with fascinating physical properties, and inspiring the construction of eco-friendly electromechanical devices. However, the interplay between hydrogen bonding and the physical properties is not fully understood at the molecular level. Herein, we demonstrate that the physical property of biological crystals with double-layer structures could be enhanced by rationally controlling hydrogen bonding interactions between amino and carboxyl groups. Different hydrogen bonding interactions result in various thermal, mechanical, electronic, and piezoelectric properties. In particular, the weak interaction between O and H atoms contributes to low mechanical strength that permits important ion displacement under stress, giving rise to a strong piezoelectric response. This study not only reveals the correlation between the hydrogen bonding and physical properties in double-layer structures of biological crystals but also demonstrates the potential of these crystals as functional biomaterials for high-performance energy-harvesting devices. Theoretical calculations and experimental verifications in this work provide new insights into the rational design of biomaterials with desirable physical properties for bioelectrical devices by modulating intermolecular interactions.

10.
Adv Mater ; 35(18): e2212172, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36780340

RESUMO

The catalytic activity has been investigated in 2D materials, and the unique structural and electronic properties contribute to their success in conventional heterogeneous catalysis. Heterojunction-based piezocatalysis has attracted increasing attention due to the band-structure engineering and the enhanced charge carrier separation by prominent piezoelectric effect. However, the piezocatalytic behavior of van der Waals (vdW) heterostructures is still unknown, and the finite active sites, catalyst poisoning, and poor conductivity are challenges for developing good piezocatalysts. Herein, a reduced graphene oxide (rGO)-MoS2 heterostructure is rationally designed to tackle these challenges. The heterostructure shows a record-high piezocatalytic degradation rate of 1.40 × 102 L mol-1 s-1 , which is 7.86 times higher than MoS2 nanosheets. Piezoresponse force microscope measurements and density functional theory calculation reveal that the coupling between semiconductive and piezoelectric properties in the vdW heterojunction is vital to break the metallic state screening effect at the MoS2 edge for keeping the piezoelectric potential. The dynamic charges generated by MoS2 and the fast charge transfer in rGO activate and maintain catalytically active sites for pollutant degradation with an ultra-fast rate and good stability. The working mechanism opens new avenues for developing efficient catalysts significant to wastewater treatments and other applications.

11.
Phys Chem Chem Phys ; 25(7): 5520-5528, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723358

RESUMO

Biomolecule-based electronic materials can enable health innovations by virtue of their intrinsic bioactivity and physical properties. However, the ultra-wide bandgap and limited piezoelectric properties of most biomaterials prevent them from reaching their full potential. Herein, the electronic structures and electromechanical properties of aliphatic amino acid crystals are investigated based on density functional theory. L-Met is found to be a wide bandgap p-type semiconductor, and the much-reduced bandgap of 2.88 eV is ascribed to the sulphur atoms in L-Met. L-Leu has a shear piezoelectric voltage constant of 2.706 V mN-1 that is over an order of magnitude higher than that of lead zirconate titanate, and good toughness and ductility are also revealed in L-Leu from mechanical property investigations. This study illustrates a computational approach to find smart and multifunctional biomaterials and inspire their growth and applications.

12.
Langmuir ; 39(4): 1474-1481, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36641772

RESUMO

Carbon nanotubes (CNTs) are a promising material for humidity sensors and wearable electronics due to their solution capability, good flexibility, and high conductivity. However, the performance of CNT-based humidity sensors is limited by their low sensitivity and slow response. Herein CNTs and hydrophilic polymers were mixed to form a composite. The hydrophilicity of the polymers and the network structure of the CNTs empowered the humidity sensors with a high response of 171% and a fast response/recovery time of 23 s/10 s. Owing to the sticky and flexible polymers, the humidity sensors showed strong adhesion to the PET substrate and exhibited outstanding bending durability. Furthermore, the flexible humidity sensor was applied to monitor human breathing and detect finger movements and handshaking.

13.
Invest Ophthalmol Vis Sci ; 63(12): 14, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350618

RESUMO

Purpose: Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase, which plays an essential role in cellular metabolism, autophagy, and chromatin accessibility. Our study aimed to determine its role in controlling corneal epithelial wound healing (CEWH). Methods: Corneal epithelial (CE)-specific Sirt1 deletion mice were created using the Cre-lox system. CE debridement was used to create a CEWH model. Corneal epithelial cells (CECs) were collected with an Algerbrush. Western blot analysis and RT-qPCR were performed to determine protein and mRNA expression levels. SiRNA transfection technology knocked down SIRT1 and cortactin expression levels in human corneal epithelial cells. Scratch wound assay, MTS assay, and TUNEL assay determined cell migratory, proliferative, and apoptotic behavior, respectively. Co-immunoprecipitation probed for SIRT1 and cortactin interaction. Immunofluorescence staining evaluated the location and expression levels of SIRT1, cortactin, acetylated-cortactin, and F-actin. Results: During CEWH, increases in SIRT1 mRNA and protein expression levels accompanied the downregulation of acetylated lysine in non-histone proteins. The loss of SIRT1 function reduced cell migration and, in turn, delayed CEWH. SIRT1 bound to and deacetylated cortactin in vitro and in vivo. Loss of either SIRT1 or cortactin suppressed wound edge lamellipodia formation, which is consistent with migration retardation. Conclusions: During CEWH, SIRT1 upregulation and its modification of cortactin boost CEC migration by increasing the development of lamellipodia at the wound edge. Therefore SIRT1 may serve as a potential target to enhance CEWH.


Assuntos
Cortactina , Sirtuína 1 , Humanos , Camundongos , Animais , Cortactina/genética , Cortactina/metabolismo , Sirtuína 1/metabolismo , Movimento Celular/fisiologia , RNA Interferente Pequeno/genética , RNA Mensageiro/genética
14.
ACS Appl Mater Interfaces ; 14(41): 46304-46312, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36196653

RESUMO

Biomolecule-based piezoelectric nanostructures emerged as a new class of energy-converse materials, and designing tailored piezoelectric amino acid arrays is essential to achieve efficient electrical-mechanical coupling and fulfill their application potential. However, the controlled growth of amino acid nanostructures is still challenging due to the limited understanding of their growth mechanism. Herein, we base on the Stranski-Krastanov (S-K) growth mode and propose a mechanism for the growth of ordered amino acid array structures via physical vapor deposition. The growth of vertical valine sheet arrays is examined by changing the substrate temperature, chamber pressure, and source-substrate distance, and a "layer-plus-sheet" growth process is revealed. The modified S-K growth mode is applied to fabricate other amino acid nanostructures like leucine and isoleucine. The growth mode not only explains the formation of uniform and controllable morphology of amino acid structures but also leads to the significant enhancement of their piezoelectric properties. The maximal effective piezoelectric constant of valine sheets is 11.4 pm V-1, which approaches its highest predicted value. The output voltage of the valine array-based nanogenerator is ∼4.6 times the output voltage of the valine powder-based nanogenerator. This work provides new insights into the growth mechanism of ordered piezoelectric amino acid arrays, making them promising candidates for applications in wearable or implantable electronic devices.


Assuntos
Aminoácidos , Fontes de Energia Elétrica , Leucina , Isoleucina , Pós , Valina
15.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36265462

RESUMO

Flexible transparent electrodes for touch panels, solar cells, and wearable electronics are in great demand in recent years, and the silver nanowire (AgNW) flexible transparent electrode (FTE) is among the top candidates due to its excellent light transmittance and flexibility and the highest conductivity of silver among all metals. However, the conductivity of an AgNWs network has long been limited by the large contact resistance. Here we show a room-temperature solution process to tackle the challenge by nanojoining AgNWs with two-dimensional graphene oxide (GO). The conductivity of the AgNWs network is improved 18 times due to the enhanced junctions between AgNWs by the coated GOs, and the AgNW-GO FTE exhibits a low sheet resistance of 23 Ohm sq-1and 88% light transmittance. It is stable under high temperature and current and their flexibility is intact after 1000 cycles of bending. Measurements of a bifunctional electrochromic device shows the high performance of the AgNW-GO FTE as a FTE.

16.
Micromachines (Basel) ; 13(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36144065

RESUMO

Energy harvesting consists of scavenging energy from the surrounding environment knowing that this energy would be "lost" if not scavenged [...].

17.
ACS Nano ; 16(11): 17998-18008, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36136126

RESUMO

Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.


Assuntos
Gelatina , Polímeros , Cristalização , Polímeros/química , Pirróis/química , Hidrogéis/química
18.
J Am Chem Soc ; 144(40): 18375-18386, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164777

RESUMO

Supramolecular packing dictates the physical properties of bio-inspired molecular assemblies in the solid state. Yet, modulating the stacking modes of bio-inspired supramolecular assemblies remains a challenge and the structure-property relationship is still not fully understood, which hampers the rational design of molecular structures to fabricate materials with desired properties. Herein, we present a co-assembly strategy to modulate the supramolecular packing of N-terminally capped alanine-based assemblies (Ac-Ala) by changing the amino acid chirality and mixing with a nonchiral bipyridine derivative (BPA). The co-assembly induced distinct solid-state stacking modes determined by X-ray crystallography, resulting in significantly enhanced electromechanical properties of the assembly architectures. The highest rigidity was observed after the co-assembly of racemic Ac-Ala with a bipyridine coformer (BPA/Ac-DL-Ala), which exhibited a measured Young's modulus of 38.8 GPa. Notably, BPA crystallizes in a centrosymmetric space group, a condition that is broken when co-crystallized with Ac-L-Ala and Ac-D-Ala to induce a piezoelectric response. Enantiopure co-assemblies of BPA/Ac-D-Ala and BPA/Ac-L-Ala showed density functional theory-predicted piezoelectric responses that are remarkably higher than the other assemblies due to the increased polarization of their supramolecular packing. This is the first report of a centrosymmetric-crystallizing coformer which increases the single-crystal piezoelectric response of an electrically active bio-inspired molecular assembly. The design rules that emerge from this investigation of chemically complex co-assemblies can facilitate the molecular design of high-performance functional materials comprised of bio-inspired building blocks.


Assuntos
Alanina , Aminoácidos , Cristalografia por Raios X , Estrutura Molecular
19.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955325

RESUMO

Although graphitic carbon nitride nanosheets (CNs) with atomic thickness are considered as promising materials for hydrogen production, the wide band gap (3.06 eV) and rapid recombination of the photogenerated electron-hole pairs impede their applications. To address the above challenges, we synergized atomically thin CNs and graphene quantum dots (GQDs), which were fabricated as 2D/0D Van der Waals heterojunctions, for H2 generation in this study. The experimental characterizations indicated that the addition of GQDs to the π-conjugated system of CNs can expand the visible light absorption band. Additionally, the surface photovoltage spectroscopy (SPV) confirmed that introducing GQDs into CNs can facilitate the transport of photoinduced carriers in the melon chain, thus suppressing the recombination of charge carriers in body. As a result, the H2 production activity of the Van der Waals heterojunctions was 9.62 times higher than CNs. This study provides an effective strategy for designing metal-free Van der Waals hetero-structured photocatalysts with high photocatalytic activity.

20.
Chem Soc Rev ; 51(16): 6936-6947, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861374

RESUMO

Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.


Assuntos
Microtecnologia , Peptídeos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...