Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
2.
J Environ Manage ; 358: 120832, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599089

RESUMO

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.

3.
Environ Sci Ecotechnol ; 20: 100412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560759

RESUMO

Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018-2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (CODMn) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.

4.
Bioresour Technol ; 399: 130643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552855

RESUMO

This study proposed an efficient framework for optimizing the design and operation of combined systems of wastewater treatment plants (WWTP) and constructed wetlands (CW). The framework coupled a WWTP model with a CW model and used a multi-objective evolutionary algorithm to identify trade-offs between energy consumption, effluent quality, and construction cost. Compared to traditional design and management approaches, the framework achieved a 27 % reduction in WWTP energy consumption or a 44 % reduction in CW cost while meeting strict effluent discharge limits for Chinese WWTP. The framework also identified feasible decision variable ranges and demonstrated the impact of different optimization strategies on system performance. Furthermore, the contributions of WWTP and CW in pollutant degradation were analyzed. Overall, the proposed framework offers a highly efficient and cost-effective solution for optimizing the design and operation of a combined WWTP and CW system.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Áreas Alagadas , Águas Residuárias , Aprendizado de Máquina
5.
Bioresour Technol ; 396: 130383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316227

RESUMO

The addition of biochar resulted in a 31.5 % to 44.6 % increase in decolorization efficiency and favorable decolorization stability. Biochar promoted extracellular polymeric substances (EPS) secretion, especially humic-like and fulvic-like substances. Additionally, biochar enhanced the electron transfer capacity of anaerobic sludge and facilitated surface attachment of microbial cells. 16S rRNA gene sequencing analysis indicated that biochar reduced microbial species diversity, enriching fermentative bacteria such as Trichococcus. Finally, a machine learning model was employed to establish a predictive model for biochar characteristics and decolorization efficiency. Biochar electrical conductivity, H/C ratio, and O/C ratio had the most significant impact on RR2 anaerobic decolorization efficiency. According to the results, the possible mechanism of RR2 anaerobic decolorization enhanced by different types of biochar was proposed.


Assuntos
Compostos Azo , Carvão Vegetal , Corantes , Compostos Azo/metabolismo , Corantes/metabolismo , Anaerobiose , RNA Ribossômico 16S/genética , Esgotos
6.
J Hazard Mater ; 465: 133446, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219578

RESUMO

Polyethylene terephthalate (PET or polyester) is a commonly used plastic and also contributes to the majority of plastic wastes. Mealworms (Tenebrio molitor larvae) are capable of biodegrading major plastic polymers but their degrading ability for PET has not been characterized based on polymer chain size molecular size, gut microbiome, metabolome and transcriptome. We verified biodegradation of commercial PET by T. molitor larvae in a previous report. Here, we reported that biodegradation of commercial PET (Mw 29.43 kDa) was further confirmed by using the δ13C signature as an indication of bioreaction, which was increased from - 27.50‰ to - 26.05‰. Under antibiotic suppression of gut microbes, the PET was still depolymerized, indicating that the host digestive enzymes could degrade PET independently. Biodegradation of high purity PET with low, medium, and high molecular weights (MW), i.e., Mw values of 1.10, 27.10, and 63.50 kDa with crystallinity 53.66%, 33.43%, and 4.25%, respectively, showed a mass reduction of > 95%, 86%, and 74% via broad depolymerization. Microbiome analyses indicated that PET diets shifted gut microbiota to three distinct structures, depending on the low, medium, and high MW. Metagenome sequencing, transcriptomic, and metabolic analyses indicated symbiotic biodegradation of PET by the host and gut microbiota. After PET was fed, the host's genes encoding degradation enzymes were upregulated, including genes encoding oxidizing, hydrolyzing, and non-specific CYP450 enzymes. Gut bacterial genes for biodegrading intermediates and nitrogen fixation also upregulated. The multiple-functional metabolic pathways for PET biodegradation ensured rapid biodegradation resulting in a half-life of PET less than 4 h with less negative impact by PET MW and crystallinity.


Assuntos
Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Poliestirenos/metabolismo , Polietilenotereftalatos/metabolismo , Polímeros , Larva/metabolismo , Polietileno/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Metaboloma
7.
Water Res ; 249: 120915, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029487

RESUMO

Utilizing H2-assisted ex-situ biogas upgrading and acetate recovery holds great promise for achieving high value utilization of biogas. However, it faces a significant challenge due to acetate's high solubility and limited economic value. To address this challenge, we propose an innovative strategy for simultaneous upgrading of biogas and the production of medium-chain fatty acids (MCFAs). A series of batch tests evaluated the strategy's efficiency under varying initial gas ratios (v/v) of H2, CH4, CO2, along with varying ethanol concentrations. The results identified the optimal conditions as initial gas ratios of 3H2:3CH4:2CO2 and an ethanol concentration of 241.2 mmol L-1, leading to maximum CH4 purity (97.2 %), MCFAs yield (54.2 ± 2.1 mmol L-1), and MCFAs carbon-flow distribution (62.3 %). Additionally, an analysis of the microbial community's response to varying conditions highlighted the crucial roles played by microorganisms such as Clostridium, Proteiniphilum, Sporanaerobacter, and Bacteroides in synergistically assimilating H2 and CO2 for MCFAs production. Furthermore, a 160-day continuous operation using a dual-membrane aerated biofilm reactor (dMBfR) was conducted. Remarkable achievements were made at a hydraulic retention time of 2 days, including an upgraded CH4 content of 96.4 ± 0.3 %, ethanol utilization ratio (URethanol) of 95.7 %, MCFAs production rate of 28.8 ± 0.3 mmol L-1 d-1, and MCFAs carbon-flow distribution of 70 ± 0.8 %. This enhancement is proved to be an efficient in biogas upgrading and MCFAs production. These results lay the foundation for maximizing the value of biogas, reducing CO2 emissions, and providing valuable insights into resource recovery.


Assuntos
Biocombustíveis , Reatores Biológicos , Dióxido de Carbono , Metano , Biofilmes , Acetatos , Carbono , Etanol , Ácidos Graxos
8.
iScience ; 26(12): 108394, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047064

RESUMO

To guide individualized intensity-modulated radiotherapy (IMRT), we developed and prospectively validated a multiview radiomics risk model for predicting radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma. And simulated radiotherapy plans with same dose-volume-histogram (DVH) but different dose distributions were redesigned to explore the clinical application of the multiview radiomics risk model. The radiomics and dosiomics were built based on selected radiomics and dosiomics features from planning computed tomography and dose distribution, respectively. The multiview radiomics risk model that integrated radiomics, dosiomics, DVH parameters, and clinical factors had better performance than traditional normal tissue complication probability models. And multiview radiomics risk model could identify differences of patient hypothyroidism-free survival that cannot be stratified by traditional models. Besides, two redesigned simulated plans further verified the clinical application and advantage of the multiview radiomics risk model. The multiview radiomics risk model was a promising method to predict radiation-induced hypothyroidism and guide individualized IMRT.

9.
EClinicalMedicine ; 63: 102202, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680944

RESUMO

Background: MRI is the routine examination to surveil the recurrence of nasopharyngeal carcinoma, but it has relatively lower sensitivity than PET/CT. We aimed to find if artificial intelligence (AI) could be competent pre-inspector for MRI radiologists and whether AI-aided MRI could perform better or even equal to PET/CT. Methods: This multicenter study enrolled 6916 patients from five hospitals between September 2009 and October 2020. A 2.5D convolutional neural network diagnostic model and a nnU-Net contouring model were developed in the training and test cohorts and used to independently predict and visualize the recurrence of patients in the internal and external validation cohorts. We evaluated the area under the ROC curve (AUC) of AI and compared AI with MRI and PET/CT in sensitivity and specificity using the McNemar test. The prospective cohort was randomized into the AI and non-AI groups, and their sensitivity and specificity were compared using the Chi-square test. Findings: The AI model achieved AUCs of 0.92 and 0.88 in the internal and external validation cohorts, corresponding to the sensitivity of 79.5% and 74.3% and specificity of 91.0% and 92.8%. It had comparable sensitivity to MRI (e.g., 74.3% vs. 74.7%, P = 0.89) but lower sensitivity than PET/CT (77.9% vs. 92.0%, P < 0.0001) at the same individual-specificities. The AI model achieved moderate precision with a median dice similarity coefficient of 0.67. AI-aided MRI improved specificity (92.5% vs. 85.0%, P = 0.034), equaled PET/CT in the internal validation subcohort, and increased sensitivity (81.9% vs. 70.8%, P = 0.021) in the external validation subcohort. In the prospective cohort of 1248 patients, the AI group had higher sensitivity than the non-AI group (78.6% vs. 67.3%, P = 0.23), albeit nonsignificant. In future randomized controlled trials, a sample size of 3943 patients in each arm would be required to demonstrate the statistically significant difference. Interpretation: The AI model equaled MRI by expert radiologists, and AI-aided MRI by expert radiologists equaled PET/CT. A larger randomized controlled trial is warranted to demonstrate the AI's benefit sufficiently. Funding: The Sun Yat-sen University Clinical Research 5010 Program (2015020), Guangdong Basic and Applied Basic Research Foundation (2022A1515110356), and Guangzhou Science and Technology Program (2023A04J1788).

10.
Nature ; 621(7979): 506-510, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648858

RESUMO

Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5-7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8-10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene-water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O-H bond protruding at the graphene-water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.

11.
J Hazard Mater ; 458: 131971, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413798

RESUMO

Microplastics (MPs) are a significant component of global pollution and cause widespread concern, particularly in wastewater treatment plants. While understanding the impact of MPs on nutrient removal and potential metabolism in biofilm systems is limited. This work investigated the impact of polystyrene (PS) and polyethylene terephthalate (PET) on the performance of biofilm systems. The results revealed that at concentrations of 100 and 1000 µg/L, both PS and PET had almost no effect on the removal of ammonia nitrogen, phosphorus, and chemical oxygen demand, but reduced the removal of total nitrogen by 7.40-16.6%. PS and PET caused cell and membrane damage, as evidenced by increases in reactive oxygen species and lactate dehydrogenase to 136-355% and 144-207% of the control group. Besides, metagenomic analysis demonstrated both PS and PET changed the microbial structure and caused functional differences. Some important genes in nitrite oxidation (e.g. nxrA), denitrification (e.g. narB, nirABD, norB, and nosZ), and electron production process (e.g. mqo, sdh, and mdh) were restrained, meanwhile, species contribution to nitrogen-conversion genes was altered, therefore disturbing nitrogen-conversion metabolism. This work contributes to evaluating the potential risks of biofilm systems exposed to PS and PET, maintaining high nitrogen removal and system stability.


Assuntos
Desnitrificação , Microbiota , Águas Residuárias , Microplásticos , Plásticos , Nitrogênio/metabolismo , Reatores Biológicos , Biofilmes , Poliestirenos
12.
J Hazard Mater ; 457: 131759, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276692

RESUMO

Polyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Larva/metabolismo , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos/metabolismo , Polímeros , Polietilenotereftalatos/metabolismo , Poliestirenos/metabolismo
13.
Sci Total Environ ; 893: 164997, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37336410

RESUMO

Sulfate-reducing ammonium oxidation (sulfammox), a novel and promising process that has emerged in recent years, is essential to nitrogen and sulfur cycles and offers significant potential for the elimination of ammonium and sulfate. This review discussed the development of sulfammox process, the mechanism, characteristics of microbes, potential influencing factors, applicable bioreactors, and proposed the research needs and future perspective. The sulfammox process could be affected by many factors, such as the NH4+/SO42- ratio, carbon source, pH, and temperature. However, these potential influencing factors were only obtained based on what has been seen in papers studying related processes such as denitrification, sulfate-reduction, etc., and have to be further tested in bioreactors carrying out the sulfammox process in the future. Currently, sulfammox is predominantly used in granular activated carbon anaerobic fluidized beds, up-flow anaerobic sludge blanket reactors, anaerobic expanded granular bed reactors, rotating biological contact reactors, and moving bed biofilm reactors. In the future, the operating parameters of sulfammox should be further optimized to improve the processing performance, and the system can be further scaled up for actual wastewater treatment. In addition, the isolation, identification, and characterization of key functional microbes and the analysis of microbial interrelationships will also be focused on in future studies to enable an in-depth analysis of the sulfammox mechanism.


Assuntos
Compostos de Amônio , Nitrogênio , Sulfatos , Enxofre , Anaerobiose , Reatores Biológicos , Desnitrificação , Nitrogênio/análise , Oxirredução , Esgotos/química
14.
Water Res X ; 18: 100167, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37250290

RESUMO

With the rapid growth yield of global sewage sludge, rational and effective treatment and disposal methods are becoming increasingly needed. Biochar preparation is an attractive option for sewage sludge treatment, the excellent physical and chemical properties of sludge derived biochar make it an attractive option for environmental improvement. Here, the current application state of sludge derived biochar was comprehensively reviewed, and the advances in the mechanism and capacity of sludge biochar in water contaminant removal, soil remediation, and carbon emission reduction were described, with particular attention to the key challenges involved, e.g., possible environmental risks and low efficiency. Several new strategies for overcoming sludge biochar application barriers to realize highly efficient environmental improvement were highlighted, including biochar modification, co-pyrolysis, feedstock selection and pretreatment. The insights offered in this review will facilitate further development of sewage sludge derived biochar, towards addressing the obstacles in its application in environmental improvement and global environmental crisis.

15.
Bioresour Technol ; 382: 129181, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210035

RESUMO

Biological biogas upgrading has been well-proven to be a promising approach for renewable bioenergy recovery, but hydrogen (H2)-assisted ex-situ biogas upgrading is hindered by a large solubility discrepancy between H2 and carbon dioxide (CO2). This study established a new dual-membrane aerated biofilm reactor (dMBfR) to improve the upgrading efficiency. Results showed that dMBfR operated at 1.25 atm H2 partial pressure, 1.5 atm biogas partial pressure, and 1.0 d hydraulic retention time could significantly improve the efficiency. The maximum methane purity of 97.6%, acetate production rate of 34.5 mmol L-1d-1, and H2 and CO2 utilization ratios of 96.5% and 96.3% were achieved. Further analysis showed that the improved performances of biogas upgrading and acetate recovery were positively correlated with the total abundances of functional microorganisms. Taken together, these results suggest that the dMBfR, which facilitates the precise CO2 and H2 supply, is an ideal approach for efficient biological biogas upgrading.


Assuntos
Biocombustíveis , Reatores Biológicos , Metano , Dióxido de Carbono , Biofilmes , Hidrogênio
16.
J Hazard Mater ; 452: 131341, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023576

RESUMO

In recent years, microplastics/nanoplastics (MPs/NPs) have received substantial attention worldwide owing to their wide applications, persistence, and potential risks. Wetland systems are considered to be an important "sink" for MPs/NPs, which can have potential ecological and environmental effects on the ecosystem. This paper provides a comprehensive and systematic review of the sources and characteristics of MPs/NPs in wetland ecosystems, together with a detailed analysis of MP/NP removal and associated mechanisms in wetland systems. In addition, the eco-toxicological effects of MPs/NPs in wetland ecosystems, including plant, animal, and microbial responses, were reviewed with a focus on changes in the microbial community relevant to pollutant removal. The effects of MPs/NPs exposure on conventional pollutant removal by wetland systems and their greenhouse gas emissions are also discussed. Finally, current knowledge gaps and future recommendations are presented, including the ecological impact of exposure to various MPs/NPs on wetland ecosystems and the ecological risks of MPs/NPs associated with the migration of different contaminants and antibiotic resistance genes. This work will facilitate a better understanding of the sources, characteristics, and environmental and ecological impacts of MPs/NPs in wetland ecosystems, and provide a new perspective to promote development in this field.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes Químicos da Água , Animais , Ecossistema , Áreas Alagadas , Plásticos , Microplásticos
17.
Bioresour Technol ; 378: 129013, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37019414

RESUMO

Azo dyes are significant organic pollutants known for their adverse effects on humans and aquatic life. In this study, anthraquinone-2-sulfonate (AQS) immobilized on biochar (BC) was employed as a novel carrier in up-flow anaerobic fixed-bed reactors to induce specific biofilm formation and promote the biotransformation efficiency of azo dyes. Novel carrier-packed reactor 1 (R1) and BC-packed reactor 2 (R2) were used to treat red reactive 2 (RR2) under continuous operation for 175 days. The decolorization rates of R1 and R2 were 96-83% and 91-73%, respectively. The physicochemical characteristics and extracellular polymeric substances (EPS) of the biofilm revealed a more stable structure in R1. Furthermore, the microbial community in R1 interacted more closely with each other and contained more keystone genera. Overall, this study provides a feasible method for improving the biotransformation of azo dyes, thus providing support for practical applications in wastewater treatment projects.


Assuntos
Compostos Azo , Corantes , Humanos , Compostos Azo/química , Anaerobiose , Corantes/química , Biofilmes , Reatores Biológicos
18.
Environ Int ; 174: 107927, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080039

RESUMO

Motivated by the carbon neutrality target, strategic planning for a low-carbon transition of sludge treatment and disposal in China is challenging due to the unpredictability of technical, regional, socioeconomic, and political factors affecting greenhouse gas (GHG) emissions. This study combines the use of a Life Cycle Assessment and the Patient Rule Induction Method, accounting for possibilities that could achieve net-zero carbon emissions by exploring multiple plausible future profiles of sludge treatment and disposal. Results show that reducing sludge landfill and increasing anaerobic digestion are effective methods to facilitate GHG reduction. Achieving carbon neutrality is closely linked to developing a cleaner electricity mix. Based on a cascaded scenario analysis considering regional differences for 31 Chinese provinces, results demonstrated a maximum cumulative reduction potential of 371 Mt CO2 equivalents from 2020 to 2050, equal to 59.84% of the business-as-usual scenario. Together with GHG reductions, terrestrial acidification and ecotoxicity as well as freshwater ecotoxicity are synergistically reduced. However, the shifting environmental burden results in freshwater eutrophication, human toxicity, marine ecotoxicity, marine eutrophication, and photochemical oxidant formation. This study presents a novel method for systematically identifying possible future development paths toward carbon neutrality. The findings may support policy designs for achieving target carbon reduction effects for sludge disposal.


Assuntos
Efeito Estufa , Esgotos , Humanos , Animais , Instalações de Eliminação de Resíduos , Estágios do Ciclo de Vida , China
19.
Front Microbiol ; 14: 1140404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089551

RESUMO

In this study, the influence of Fe3+ on N removal, microbial assembly, and species interactions in a biofilm system was determined. The results showed that maximum efficiencies of ammonia nitrogen (NH4 +-N), total nitrogen (TN), phosphorus (P), and chemical oxygen demand (COD) removal were achieved using 10 mg/L Fe3+, reaching values of 100, 78.85, 100, and 95.8%, respectively, whereas at concentrations of 15 and 30 mg/L Fe3+ suppressed the removal of NH4 +-N, TN, and COD. In terms of absolute abundance, the expression of bacterial amoA, narG, nirK, and napA was maximal in the presence of 10 mg/L Fe3+ (9.18 × 105, 8.58 × 108, 1.09 × 108, and 1.07 × 109 copies/g dry weight, respectively). Irrespective of Fe3+ concentrations, the P removal efficiency remained at almost 100%. Candidatus_Competibacter (10.26-23.32%) was identified as the most abundant bacterial genus within the system. Determinism (50%) and stochasticity (50%) contributed equally to microbial community assembly. Co-occurrence network analysis revealed that in the presence of Fe3+, 60.94% of OTUs in the biofilm system exhibited positive interactions, whereas 39.06% exhibited negative interactions. Within the OTU-based co-occurrence network, fourteen species were identified as key microbes. The stability of the system was found to be predominantly shaped by microbial cooperation, complemented by competition for resources or niche incompatibility. The results of this study suggested that during chemical P removal in wastewater treatment plants using biofilm methods, the concentration of supplemental Fe3+ should be maintained at 10 mg/L, which would not only contribute to P elimination, but also enhance N and COD removal.

20.
EClinicalMedicine ; 58: 101930, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090437

RESUMO

Background: Radiotherapy is the mainstay of treatment for nasopharyngeal carcinoma. Radiation-induced temporal lobe injury (TLI) can regress or resolve in the early phase, but it is irreversible at a later stage. However, no study has proposed a risk-based follow-up schedule for its early detection. Planning evaluation is difficult when dose-volume histogram (DVH) parameters are similar and optimization is terminated. Methods: This multicenter retrospective study included 6065 patients between 2014 and 2018. A 3D ResNet-based deep learning model was developed in training and validation cohorts and independently tested using concordance index in internal and external test cohorts. Accordingly, the patients were stratified into risk groups, and the model-predicted risks were used to develop risk-based follow-up schedules. The schedule was compared with the Radiation Therapy Oncology Group (RTOG) recommendation (every 3 months during the first 2 years and every 6 months in 3-5 years). Additionally, the model was used to evaluate plans with similar DVH parameters. Findings: Our model achieved concordance indexes of 0.831, 0.818, and 0.804, respectively, which outperformed conventional prediction models (all P < 0.001). The temporal lobes in all the cohorts were stratified into three groups with discrepant TLI-free survival. Personalized follow-up schedules developed for each risk group could detect TLI 1.9 months earlier than the RTOG recommendation. According to a higher median predicted 3-year TLI-free survival (99.25% vs. 99.15%, P < 0.001), the model identified a better plan than previous models. Interpretation: The deep learning model predicted TLI more precisely. The model-determined risk-based follow-up schedule detected the TLI earlier. The planning evaluation was refined because the model identified a better plan with a lower risk of TLI. Funding: The Sun Yat-sen University Clinical Research 5010 Program (2015020), Guangdong Basic and Applied Basic Research Foundation (2022A1515110356), Medical Scientific Research Foundation of Guangdong Province (A2022367), and Guangzhou Science and Technology Program (2023A04J1788).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...