RESUMO
Near-infrared (NIR) fluorescence imaging-guided surgery is increasingly concerned in gastrointestinal surgery because it can potentially improve clinical outcomes. This new technique can provide intraoperative image guidance for surgical margin evaluation and help surgeons examine residual lesions and small tumors during surgery. NIR fluorophores methylene blue (MB) is a promising fluorescent probe because of its safety and intraoperative imaging in the clinic. However, whether MB possesses the potential to perform intraoperative navigation of the stomach and gastric tumors needs to be further explored. Therefore, the current study mainly validated MB's usefulness in animal models' intraoperative imaging of stomach and gastric tumors. NIR fluorophores MB can exhibit specific uptake by the gastric epithelial cells and cancer cells. It is primarily found that MB can directly target the stomach in mice. Interestingly, MB was applied for the NIR imaging of gastric cancer cell xenografts, suggesting that MB cannot specifically target subcutaneous and orthotopic gastric tumors in xenograft models. Thus, it can be concluded that MB has no inherent specificity for gastric tumors but specificity for gastric tissues. Apparently, MB-positive and negative NIR imaging are meaningful in targeting gastric tissues and tumors. MB is expected to represent a helpful NIR agent to secure precise resection margins during the gastrectomy and resection of gastric tumors.
RESUMO
Sleep insufficiency is associated with various disorders; the molecular basis is unknown until now. Here, 14 males and 18 females were subjected to short-term (24 h) sleep deprivation, and donated fasting blood samples prior to (day 1) and following (days 2 and 3) short-term sleep deprivation. We used multiple omics techniques to examine changes in volunteers' blood samples that were subjected to integrated, biochemical, transcriptomic, proteomic, and metabolomic analyses. Sleep deprivation caused marked molecular changes (46.4% transcript genes, 59.3% proteins, and 55.6% metabolites) that incompletely reversed by day 3. The immune system in particular neutrophil-mediated processes associated with plasma superoxidase dismutase-1 and S100A8 gene expression was markedly affected. Sleep deprivation decreased melatonin levels and increased immune cells, inflammatory factors and c-reactive protein. By disease enrichment analysis, sleep deprivation induced signaling pathways for schizophrenia and neurodegenerative diseases enriched. In sum, this is the first multiomics approach to show that sleep deprivation causes prominent immune changes in humans, and clearly identified potential immune biomarkers associated with sleep deprivation. This study indicated that the blood profile following sleep disruption, such as may occur among shift workers, may induce immune and central nervous system dysfunction.
RESUMO
TP53-induced glycolysis and apoptosis regulator (TIGAR) acts as a switch for nephropathy, but its underlying mechanism is still unclear. The purpose of this study was to explore the potential biological significance and underlying mechanism of TIGAR in modulating adenine-induced ferroptosis in human proximal tubular epithelial (HK-2) cells. HK-2 cells under- or overexpressing TIGAR were challenged with adenine to induce ferroptosis. The levels of reactive oxygen species (ROS), iron, malondialdehyde (MDA), and glutathione (GSH) were assayed. Expression of ferroptosis-associated solute carrier family seven-member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) at the level of mRNA and protein were measured by quantitative real-time-PCR and western blotting. The phosphorylation levels of proteins in the mTOR/S6KP70 pathway were determined by western blotting. Adenine overload triggered ferroptosis in HK-2 cells, as evidenced by reduced levels of GSH, SLC7A11, and GPX4, and increased levels of iron, MDA, and ROS. TIGAR overexpression repressed adenine-induced ferroptosis and induced mTOR/S6KP70 signaling. Inhibitors of mTOR and S6KP70 weakened the ability of TIGAR to inhibit adenine-induced ferroptosis. TIGAR inhibits adenine-induced ferroptosis in human proximal tubular epithelial cells by activating the mTOR/S6KP70 signaling pathway. Therefore, activating the TIGAR/mTOR/S6KP70 axis may be a treatment for crystal nephropathies.
RESUMO
The electrochemical properties of as-cast Zr56Cu19Ni11Al9Nb5 metallic glass and samples annealed at different temperatures were investigated using potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in phosphate buffer saline (PBS) solution. It was shown that passivation occurred for the as-cast sample and the samples annealed at 623-823 K, indicating good corrosion resistance. At higher annealing temperature, the corrosion resistance first increased, and then decreased. The sample annealed at 823 K exhibited the best corrosion resistance, with high spontaneous corrosion potential Ecorr at -0.045 VSCE, small corrosion current density icorr at 1.549 × 10-5 A·cm-2, high pitting potential Epit at 0.165 VSCE, the largest arc radius, and the largest sum of Rf and Rct at 5909 Ω·cm2. For the sample annealed at 923 K, passivation did not occur, with low Ecorr at -0.075 VSCE, large icorr at 1.879 × 10-5 A·cm-2, the smallest arc radius, and the smallest sum of Rf and Rct at 2173 Ω·cm2, which suggested the worst corrosion resistance. Proper annealing temperature led to improved corrosion resistance due to structural relaxation and better stability of the passivation film, however, if the annealing temperature was too high, the corrosion resistance deteriorated due to the chemical inhomogeneity between the crystals and the amorphous matrix. Optical microscopy and scanning electron microscopy (SEM) examinations indicated that localized corrosion occurred. Results of energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) illustrated that the main corrosion products were ZrO2, CuO, Cu2O, Ni(OH)2, Al2O3, and Nb2O5.
RESUMO
Cardiovascular disease is one of the main causes of death worldwide. Arrhythmias are an important group of cardiovascular diseases. The standard 12-lead electrocardiogram signals are an important tool for diagnosing arrhythmias. Although 12-lead electrocardiogram signals provide more comprehensive arrhythmia information than single-lead electrocardiogram signals, it is difficult to effectively fuse information between different leads. In addition, most of the current researches working on automatic diagnosis of cardiac arrhythmias are based on modeling and analysis of single-mode features extracted from one-dimensional electrocardiogram sequences, ignoring the frequency domain features of electrocardiogram signals. Therefore, developing an automatic arrhythmia detection algorithm based on 12-lead electrocardiogram with high accuracy and strong generalization ability is still challenging. In this paper, a multimodal feature fusion model based on the mechanism is developed. This model utilizes a dual channel deep neural network to extract different dimensional features from one-dimensional and two-dimensional electrocardiogram time-frequency maps, and combines attention mechanism to effectively fuse the important features of 12-lead, thereby obtaining richer arrhythmia information and ultimately achieving accurate classification of nine types of arrhythmia signals. This study used electrocardiogram signals from a mixed dataset to train, validate, and evaluate the model, with an average of F1 score and average accuracy reached 0.85 and 0.97, respectively. Experimental results show that our algorithm has stable and reliable performance, so it is expected to have good practical application potential.
Assuntos
Algoritmos , Arritmias Cardíacas , Humanos , Arritmias Cardíacas/diagnóstico , Redes Neurais de Computação , Frequência Cardíaca , Eletrocardiografia/métodosRESUMO
Osteosarcoma is an aggressive malignant tumor that primarily develops in children and adolescents. The conventional treatments for osteosarcoma often exert negative effects on normal cells, and chemotherapeutic drugs, such as platinum, can lead to multidrug resistance in tumor cells. Herein, this work reports a new bioinspired tumor-targeting and enzyme-activatable cell-material interface system based on DDDEEK-pY-phenylboronic acid (SAP-pY-PBA) conjugates. Using this tandem-activation system, this work selectively regulates the alkaline phosphatase (ALP) triggered anchoring and aggregation of SAP-pY-PBA conjugates on the cancer cell surface and the subsequent formation of the supramolecular hydrogel. This hydrogel layer can efficiently kill osteosarcoma cells by enriching calcium ions from tumor cells and forming a dense hydroxyapatite layer. Owing to the novel antitumor mechanism, this strategy neither hurts normal cells nor causes multidrug resistance in tumor cells, thereby showing an enhanced tumor treatment effect than the classical antitumor drug, doxorubicin (DOX). The outcome of this research demonstrates a new antitumor strategy based on a bioinspired enzyme-responsive biointerface combining supramolecular hydrogels with biomineralization.
RESUMO
GNB1-related disorder is characterized by intellectual disability, abnormal tone, and other variable neurologic and systemic features. GNB1 encodes the ß1 subunit of the heterotrimeric G-protein, a complex with a key role in signal transduction. Consistent with its particularly high expression in rod photoreceptors, Gß1 forms a subunit of retinal transducin (Gαtß1γ1 ), which mediates phototransduction. In mice, GNB1 haploinsufficiency has been associated with retinal dystrophy. In humans, however, although vision and eye movement abnormalities are common in individuals with GNB1-related disorder, rod-cone dystrophy is not yet an established feature of this condition. We expand the phenotype of GNB1-related disorder with the first confirmed report of rod-cone dystrophy in an affected individual, and contribute to a further understanding of the natural history of this condition in a mildly affected 45-year-old adult.
RESUMO
Obesity is prevalent in rural areas of China, and there are inconsistent findings regarding the association between metal(loid) exposure and the risk of obesity. Abdominal obesity (AOB), which reflects visceral fat abnormity, is a crucial factor in studying obesity-related diseases. We conducted a study measuring 20 urinary metal(loid)s, 13 health indicators, and the waist circumference (WC) in 1849 participants from 10 rural areas of China to investigate their relationships. In the single exposure models, we found that urinary chromium (Cr) was significantly associated with the odds of having AOB [adjusted odds ratio (OR) = 1.81 (95% confidence interval (CI): 1.24, 2.60)]. In the mixture exposure models, urinary Cr consistently emerged as the top contributor to AOB, while the overall effect of mixed metal(loid)s was positive toward the odds of having AOB [adjusted OR: 1.33 (95% CI: 1.00, 1.77)], as revealed from the quantile g-computation model. After adjusting for the effects of other metal(loid)s, we found that the elevation of apolipoprotein B and systolic blood pressure significantly mediated the association between urinary Cr and the odds of having AOB by 9.7 and 19.4%, respectively. Our results suggest that exposure to metal(loid)s is a key factor contributing to the prevalence of AOB and WC gain in rural areas of China.
RESUMO
Floor egg-laying behavior (FELB) is one of the most concerning issues in commercial cage-free (CF) houses because floor eggs (i.e., mislaid eggs on the floor) result in high labor costs and food safety concerns. Farms with poor management may have up to 10% of daily floor eggs. Therefore, it is critical to improving floor eggs management. Detecting FELB timely and identifying the reason behind its cause may address the issue. The primary objectives of this research were to develop and test a new deep-learning model to detect FELB and evaluate the model's performance in 4 identical research CF houses (200 Hy-Line W-36 hens per house), where perches and litter floor were provided to mimic commercial tiered aviary system. Five different YOLOv5 models (i.e., YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) were trained and compared. According to a dataset of 5400 images (i.e., 3780 for training, 1080 for validation, and 540 for testing), YOLOv5m-FELB and YOLOv5x-FELB models were tested with higher precision (99.9%), recall (99.2%), mAP@0.50 (99.6%), and F1-score (99.6%) than others. However, the YOLOv5m-NFELB model has lower recall than other YOLOv5-NFELB models, although it was tested with higher precision. Similarly, the speed of data processing (4%-45% FPS), and training time (3%-148%) were higher in the YOLOv5s model while requiring less GPU (1.8-4.8 times) than in other models. Furthermore, the camera height of 0.5 m and clean camera outperform compared to 3 m height and dusty camera. Thus, the newly developed and trained YOLOv5s model will be further innovated. Future studies will be conducted to verify the performance of the model in commercial CF houses to detect FELB.
RESUMO
BACKGROUND: Changes in Polyamine metabolism (PAM) have been shown to establish a suppressive tumor microenvironment (TME) and substantially influence the progression of cancer in the recent studies. However, newly emerging data have still been unable to fully illuminate the specific effects of PAM in human cancers. Here, we analyzed the expression profiles and clinical relevance of PAM genes in colorectal cancer (CRC). METHODS: Based on unsupervised consensus clustering and principal component analysis (PCA) algorithm, we designed a scoring model to evaluate the prognosis of CRC patients and characterize the TME immune profiles, with related independent immunohistochemical validation cohort. Through comparative profiling of cell communities defined by single cell sequencing data, we identified the distinct characteristics of polyamine metabolism in the TME of CRC. RESULTS: Three PAM patterns with distinct prognosis and TME features were recognized from 1224 CRC samples. Moreover, CRC patients could be divided into high- and low-PAMscore subgroups by PCA-based scoring system. High PAMscore subgroup were associated to more advanced stage, higher infiltration level of immunosuppressive cells, and unfavorable prognosis. These results were also validated in CRC samples from other public CRC datasets and our own cohort, which suggested PAM genes were ideal biomarkers for predicting CRC prognosis. Notably, PAMscore also corelated with microsatellite instability-high (MSI-H) status, higher tumor mutational burden (TMB), and increased immune checkpoint gene expression, implying a potential role of PAM genes in regulating response to immunotherapy. To further confirm above results, we demonstrated a high-resolution landscape of TME and cell-cell communication network in different PAM patterns using single cell sequencing data and found that polyamine metabolism affected the communication between cancer cells and several immune cells such as T cells, B cells and myeloid cells. CONCLUSION: In total, our findings highlighted the significance of polyamine metabolism in shaping the TME and predicting the prognosis of CRC patients, providing novel strategies for immunotherapy and the targeting polyamine metabolites.
RESUMO
On Jun. 20th, 2022, thirty industrial hemp (Cannabis sativa L.) plants (cv. Peach Haze) were vegetatively propagated, grown in a greenhouse for 21 days, and transplanted to a field at The Hemp Mine located in Fair Play, SC. Near the time of harvest (Nov. 17th, 2022), significant mycelial growth was noticed within the floral structure on 30% of plants. Three diseased plants were submitted to the Clemson University Plant and Pest Diagnostic Clinic. Stem cankers were observed on all three plants. Sclerotia typical of Sclerotinia spp. were found inside the stems of two plants. Two pure isolates were obtained by placing a sclerotium from each plant onto an acidified potato dextrose agar (APDA) plate and transferring a hyphal tip to a new APDA plate. After a 7-day-long growth at 25°C under a 24-h photoperiod, both isolates (22-1002-A and B) produced white and sparse mycelia and dark brownish to blackish sclerotia typical of S. sclerotiorum (aver. 36.5 per 90-mm plate). Sclerotia (n=50) were spherical (46%), oval (46%), or irregular (8%) and measured 1.8 to 7.2 × 1.6 to 4.5 mm (aver. 3.6 ± 1.2 × 2.7 ± 0.6 mm). No spores were produced. Sequences of the internal transcribed spacer region including the 5.8S ribosomal RNA gene (GenBank accession no. OQ749889) and the glyceraldehyde 3-phosphate dehydrogenases (G3PDH) gene (OQ790148) of 22-1002-A are 99.8% and 100% identical to those of a S. sclerotiorum isolate LAS01 on industrial hemp (MW079844 and MW082601; Garfinkel 2021). The G3PDH sequence of 22-1002-A is also 100% identical to that of ATCC 18683 (JQ036048), an authenticated S. sclerotiorum strain used for whole genome sequencing (Derbyshire et al. 2017). Ten healthy 'Peach Haze' plants (approx. 10 to 15" tall) grown in 6" pots were used in a pathogenicity test. The epidermis layer of each main stem was slightly wounded (2 × 2 mm2, 1 mm deep) using a sterile dissecting blade. A 5 × 5 mm2 mycelial plug of 22-1002-A was placed onto the wound of each of five plants, while APDA plugs were used for five control plants. Parafilm was used to secure mycelial and sterile agar plugs. All plants were maintained in an indoor controlled environment (25°C, >60% humidity, 24-h photoperiod). Stem cankers were visible on all inoculated plants 5 days after inoculation (DAI). Four of the five inoculated plants had noticeable yellowing and wilting on the foliage 9 DAI, while control plants remained asymptomatic. Elongated and tan-colored cankers (44.3 to 86.2 mm long, aver. 63.1 ± 18.3 mm) were developed at the wounded sites of inoculated plants. Wounded sites of control plants remained green in color and only slightly expanded in length (aver. 3.6 ± 0.8 mm). Tissue was excised from the canker margin of each inoculated plant and the wounded site of each control plant, surface sterilized with 10% bleach for 1 min, rinsed in sterile water, placed onto APDA, and incubated at 25°C. Sclerotia-producing colonies typical of S. sclerotiorum were recovered from all inoculated plants after 6 days, but not from any control plants. Sclerotinia sclerotiorum has a host range of more than 400 plant species (Boland and Hall 1994). This fungus causing stem canker on industrial hemp were reported from MT (Shaw 1973) and OR (Garfinkel 2021) in the USA and Canada (Bains et al. 2000). This is the first report of this disease in SC. Industrial hemp is an emerging crop in SC. The detection of this disease helps SC growers to take actions to monitor and prevent disease outbreak as well as develop an effective management practice when it occurs.
RESUMO
BACKGROUND: Delirium is one of the most common complications in critically ill children. Once delirium occurs, it will cause physical and psychological distress in children and increase the length of their ICU stay and hospitalization costs. Understanding the risk factors for delirium in critically ill children can help develop targeted nursing interventions to reduce the incidence of delirium. AIMS AND OBJECTIVES: To investigate the incidence and the risk factors of delirium in the paediatric intensive care unit (PICU). DESIGN: Prospective observational study. METHODS: We performed a prospective observational study in critically ill patients in the PICU between February and July 2020. Delirium was diagnosed by the Cornell Assessment of Paediatric Delirium (CAPD) and the Richmond Agitation Sedation Scale and analysed via univariate analysis and multivariate logistic regression to determine the independent risk factors of delirium in critically ill children. RESULTS: The study enrolled 315 patients ranging in age from 1-202 (65.3-54.3) months, with 56.2% (n = 177) being male. The incidence of delirium was 29.2% (n = 92) according to CAPD criteria. Among them, 33 cases (35.9%) were of hyperactive delirium, 16 cases (17.4%) were of hypoactive delirium, and 43 cases (46.7%) were of mixed delirium. By using stepwise logistic regression, the independent risk factors of delirium included mechanical ventilation (odds ratio [OR], 11.470; 95% confidence interval [CI], 4.283-30.721), nervous system disease (OR, 5.596; 95%CI, 2.445 to 12.809), developmental delay (OR, 5.157; 95% CI, 1.990-13.363), benzodiazepine (OR, 3.359; 95% CI 1.278-8.832), number of catheters (OR, 1.918; 95% CI, 1.425 to 2.582), and age (OR, 0.985; 95% confidence interval CI, 0.976-0.993). CONCLUSIONS: Delirium is a common complication in the PICU. The independent risk factors include mechanical ventilation, nervous system disease, developmental delay, benzodiazepines, higher number of catheters, and younger age. This study may help develop intervention strategies to reduce the incidence of delirium in critically ill children by targeting modifiable risk factors. RELEVANCE TO CLINICAL PRACTICE: Recommendations for practice include paying attention to high-risk children in the ICU who are prone to delirium, removing influencing factors as soon as possible, and providing targeted nursing interventions.
RESUMO
A large number of transcriptome studies generate important data and information for the study of pathogenic mechanisms of pathogens, including Vibrio cholerae. V. cholerae transcriptome data include RNA-seq and microarray: microarray data mainly include clinical human and environmental samples, and RNA-seq data mainly focus on laboratory processing conditions, including different stresses and experimental animals in vivo. In this study, we integrated the data sets of both platforms using Rank-in and the Limma R package normalized Between Arrays function, achieving the first cross-platform transcriptome data integration of V. cholerae. By integrating the entire transcriptome data, we obtained the profiles of the most active or silent genes. By transferring the integrated expression profiles into the weighted correlation network analysis (WGCNA) pipeline, we identified the important functional modules of V. cholerae in vitro stress treatment, gene manipulation, and in vitro culture as DNA transposon, chemotaxis and signaling, signal transduction, and secondary metabolic pathways, respectively. The analysis of functional module hub genes revealed the uniqueness of clinical human samples; however, under specific expression patterning, the Δhns, ΔoxyR1 strains, and tobramycin treatment group showed high expression profile similarity with human samples. By constructing a protein-protein interaction (PPI) interaction network, we discovered several unreported novel protein interactions within transposon functional modules. IMPORTANCE We used two techniques to integrate RNA-seq data for laboratory studies with clinical microarray data for the first time. The interactions between V. cholerae genes were obtained from a global perspective, as well as comparing the similarity between clinical human samples and the current experimental conditions, and uncovering the functional modules that play a major role under different conditions. We believe that this data integration can provide us with some insight and basis for elucidating the pathogenesis and clinical control of V. cholerae.
RESUMO
Peroxisome proliferator-activated receptor alpha (PPARα) activation-induced hepatomegaly is accompanied by hepatocyte hypertrophy around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area. However, the molecular mechanisms underlying this spatial change of hepatocytes remains unclear. In this study, we examined the characteristics and possible reasons for the zonation distinction of hypertrophy and proliferation during PPARα activation-induced mouse liver enlargement. Mice were injected with corn oil or a typical mouse PPARα agonist WY-14643 (100 mg·kg-1·d-1, i.p.) for 1, 2, 3, 5 or 10 days. At each time point, the mice were sacrificed after the final dose, and liver tissues and serum were harvested for analysis. We showed that PPARα activation induced zonal changes in hepatocyte hypertrophy and proliferation in the mice. In order to determine the zonal expression of proteins related to hepatocyte hypertrophy and proliferation in PPARα-induced liver enlargement, we performed digitonin liver perfusion to separately destroy the hepatocytes around the CV or PV areas, and found that PPARα activation-induced increase magnitude of its downstream targets such as cytochrome P450 (CYP) 4 A and acyl-coenzyme A oxidase 1 (ACOX1) levels around the CV area were higher compared with those around the PV area. Upregulation of proliferation-related proteins such as cell nuclear antigen (PCNA) and cyclin A1 (CCNA1) after WY-14643-induced PPARα activation mainly occurred around the PV area. This study reveals that the zonal expression of PPARα targets and proliferation-related proteins is responsible for the spatial change of hepatocyte hypertrophy and proliferation after PPARα activation. These findings provide a new insight into the understanding of PPARα activation-induced liver enlargement and regeneration.
RESUMO
BACKGROUND: Sepsis exacerbates intestinal microecological disorders leading to poor prognosis. Proper modalities of nutritional support can improve nutrition, immunity, and intestinal microecology. AIM: To identify the optimal modality of early nutritional support for patients with sepsis from the perspective of intestinal microecology. METHODS: Thirty patients with sepsis admitted to the intensive care unit of the General Hospital of Ningxia Medical University, China, between 2019 and 2021 with indications for nutritional support, were randomly assigned to one of three different modalities of nutritional support for a total of 5 d: Total enteral nutrition (TEN group), total parenteral nutrition (TPN group), and supplemental parenteral nutrition (SPN group). Blood and stool specimens were collected before and after nutritional support, and changes in gut microbiota, short-chain fatty acids (SCFAs), and immune and nutritional indicators were detected and compared among the three groups. RESULTS: In comparison with before nutritional support, the three groups after nutritional support presented: (1) Differences in the gut bacteria (Enterococcus increased in the TEN group, Campylobacter decreased in the TPN group, and Dialister decreased in the SPN group; all P < 0.05); (2) different trends in SCFAs (the TEN group showed improvement except for Caproic acid, the TPN group showed improvement only for acetic and propionic acid, and the SPN group showed a decreasing trend); (3) significant improvement of the nutritional and immunological indicators in the TEN and SPN groups, while only immunoglobulin G improved in the TPN group (all P < 0.05); and (4) a significant correlation was found between the gut bacteria, SCFAs, and nutritional and immunological indicators (all P < 0.05). CONCLUSION: TEN is recommended as the preferred mode of early nutritional support in sepsis based on clinical nutritional and immunological indicators, as well as changes in intestinal microecology.
Assuntos
Apoio Nutricional , Sepse , Humanos , Nutrição Parenteral , Nutrição Parenteral Total , Nutrição Enteral , Sepse/terapiaRESUMO
Advanced sensing devices, highly sensitive, and reliable in detecting ultralow concentrations of circulating biomarkers, are extremely desirable and hold great promise for early diagnostics and real-time progression monitoring of diseases. Nowadays, the most commonly used clinical methods for diagnosing biomarkers suffer from complicated procedures and being time consumption. Here, a chip-based portable ultra-sensitive THz metasensor is reported by exploring quasi-bound states in the continuum (quasi-BICs) and demonstrate its capability for sensing low-concentration analytes. The designed metasensor is made of the designed split-ring resonator metasurface which supports magnetic dipole quasi-BIC combining functionalized gold nanoparticles (AuNPs) conjugated with the specific antibody. Attributed to the strong near-field enhancement near the surface of the microstructure enabled by the quasi-BICs, light-analyte interactions are greatly enhanced, and thus the device's sensitivity is boosted significantly. The system sensitivity slope is up to 674 GHz/RIU, allowing for repeatable resolving detecting ultralow concentration of C-reactive protein (CRP) and Serum Amyloid A (SAA), respectively, down to 1 pM. The results touch a range that cannot be achieved by ordinary immunological assays alone, offering a novel non-destructive and rapid trace measured approach for next-generation biomedical quantitative detection systems.
RESUMO
BACKGROUND: The study aims to investigate the clinical characteristics of early postnatal period in children with prenatal hydronephrosis (HN) in our single center for 8 years. STUDY DESIGN: The clinical data of 1137 children with prenatal HN from 2012 to 2020 were retrospectively analyzed in our center. Variables of our study mainly included different malformations and urinary tract dilation (UTD) classification, and main outcomes were recurrent hospitalization, urinary tract infection (UTI), jaundice, and surgery. RESULTS: Among the 1137 children with prenatal HN in our center, 188 cases (16.5%) were followed-up in early postnatal period, and 110 cases (58.5%) were found malformations. The incidence of recurrent hospitalization (29.8%) and UTI (72.5%) were higher in malformation, but the incidence of jaundice (46.2%) was higher in non-malformation(P < 0.001). Furthermore, UTI and jaundice were higher in vesicoureteral reflux (VUR) than those in uretero-pelvic junction obstruction (UPJO) (P < 0.05). Meanwhile, Children with UTD P2 and UTD P3 were prone to recurrent UTI, but UTD P0 was prone to jaundice (P < 0.001). In addition, 30 cases (16.0%) of surgery were all with malformations, and the surgical rates of UTD P2 and UTD P3 were higher than those of UTD P0 and UTD P1 (P < 0.001). Lastly, we concluded that the first follow-up should be less than 7 days, the first assessment should be 2 months, and the follow up should be at least once every 3 months. CONCLUSION: Children with prenatal HN have been found many malformations in early postnatal period, and with high-grade UTD were more prone to recurrent UTI, even to surgery. So, prenatal HN with malformations and high-grade UTD should be followed up in early postnatal period regularly.
Assuntos
Hidronefrose , Infecções Urinárias , Sistema Urinário , Criança , Gravidez , Feminino , Humanos , Lactente , Estudos Retrospectivos , Hidronefrose/complicações , Hidronefrose/diagnóstico por imagem , Infecções Urinárias/complicações , Infecções Urinárias/epidemiologia , Dilatação PatológicaRESUMO
Malignant ascites in advanced hepatocellular carcinoma (HCC) is a complex clinical problem that lacks effective treatments. Due to the insensitivity of advanced HCC cells to traditional chemotherapies, low drug accumulation, and limited drug residence time in the peritoneal cavity, the therapeutic effects of malignant ascites in HCC are not satisfactory. In this study, an injectable hydrogel drug delivery system based on chitosan hydrochloride and oxidized dextran (CH-OD) is designed to load sulfasalazine (SSZ), an FDA-approved drug with ferroptosis-inducing ability, for effective tumor-killing and activation of anti-tumor immunity. Compared to free SSZ, SSZ-loaded CH-OD (CH-OD-SSZ) hydrogel exhibits greater cytotoxicity and induces higher levels of immunogenic ferroptosis. In the preclinical model of hepatoma ascites, intraperitoneal administration of CH-OD-SSZ hydrogel can significantly suppress tumor progression and improve the immune landscape. Both in vitro and in vivo, CH-OD-SSZ hydrogel induces the repolarization of macrophages to an M1-like phenotype and promotes the maturation and activation of dendritic cells. Combination treatment with CH-OD-SSZ hydrogel and anti-programmed cell death protein 1 (PD-1) immunotherapy achieves more than 50% ascites regression and generates long-term immune memory. Collectively, CH-OD-SSZ hydrogel exhibits promising therapeutic potential in the treatment of peritoneal dissemination and malignant ascites in advanced HCC, especially when combined with anti-PD-1 immunotherapy.
RESUMO
Analytical solutions to the scattering of a uniform uniaxial anisotropic sphere illuminated by an on-axis high-order Bessel vortex beam (HOBVB) are investigated. Using the vector wave theory, the expansion coefficients of the incident HOBVB in terms of the spherical vector wave functions (SVWFs) are obtained. According to the orthogonality of the associated Legendre function and exponential function, more concise expressions of the expansion coefficients are derived. It can reinterpret the incident HOBVB faster compared with the expansion coefficients of double integral forms. The internal fields of a uniform uniaxial anisotropic sphere are proposed in the integrating form of the SVWFs by introducing the Fourier transform. The differences of scattering characteristics of a uniaxial anisotropic sphere illuminated by a zero-order Bessel beam, Gaussian beam, and HOBVB are exhibited. Influences of the topological charge, conical angle, and particle size parameters on the angle distributions of the radar cross section are analyzed in detail. The scattering and extinction efficiencies varied with the particle radius, conical angle, permeability, and dielectric anisotropy are also discussed. The results provide insights into the scattering and light-matter interactions and may find important applications in optical propagation and optical micromanipulation of biological and anisotropic complex particles.
RESUMO
OBJECTIVE: To investigate the effect of modified alternate negative pressure drainage on postoperative outcomes after posterior lumbar interbody fusion (PLIF) surgery. METHODS: This was a prospective study involving 84 patients who underwent PLIF surgery between January 2019 and June 2020. Of these patients, 22 had single-segment surgery and 62 had two-segment surgery. Patients were grouped by surgical segment and admission sequence:the observation group included patients with a single-segment surgery, and the control group included patients with a two-segment surgery. Natural pressure drainage was given to 42 patients in the observation group (modified alternate negative pressure drainage group) after surgery, which was then changed to negative pressure drainage after 24 hours. In the control group, 42 patients were given negative pressure drainage after surgery, which was then changed to natural pressure drainage after 24 hours. The total drainage volume, drainage time, maximum body temperature at 24 hours and 1 week after surgery, and drainage-related complications were observed and compared between the two groups. RESULTS: There was no significant difference in operative time and intraoperative blood loss between the two groups. The postoperative total drainage volume was significantly lower in the observation group (456.69±124.50) ml than in control group (572.36±117.75) ml, and the drainage time was significantly shorter in the observation group (4.95±1.31) days than in the control group (4.00±1.17) days. Maximum body temperature at 24 hours after surgery was similar in both groups (37.09±0.31)°C in the observation group and (37.03±0.33)°C in the control group, while on the 1st week after surgery, it was slightly higher in the observation group (37.05±0.32)°C than in the control group (36.94±0.33)°C, but the difference was not significant. There were no significant differences in drainage-related complications, with one case(2.38%) of superficial wound infection in the observation group and two cases(4.76%) in control group. CONCLUSION: Modified alternate negative pressure drainage after posterior lumbar fusion can reduce the drainage volume and shorten the drainage time without increasing the risk of drainage-related complications.