Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.504
Filtrar
1.
Hum Vaccin Immunother ; : 1-8, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545015

RESUMO

Background Rotavirus infections, prevalent in human populations, are caused mostly by group A viruses. Immunization against rotaviruses in infancy is currently the most effective and economical strategy to prevent rotavirus infection. This study evaluated the safety of a novel hexavalent rotavirus vaccine and analyzed its dose and immunogenicity. Methods This randomized, double-blinded, placebo-controlled phase I clinical trial enrolled healthy adults, toddlers, and infants in Zhengding County, Hebei Province, northern China. 40 adults and 40 children were assigned in a 2:1:1 ratio to receive one vaccine dose, placebo 1, and placebo 2, respectively. 120 6-12 week old infants were assigned equivalently into 3 groups. The infants in each group were assigned in a 2:1:1 ratio to receive three doses of vaccine, placebo 1, and placebo 2, at a 28-day interval. Adverse events (AEs) until 28 days after each dose and serious adverse events (SAEs) until 6 months after the third dose were reported. Virus shedding until 14 days after each dose in infants was tested. Geometric mean concentrations (GMCs) and seroconversion rates were measured for anti-rotavirus IgA by using an enzyme-linked immunosorbent assay (ELISA). Results The solicited and unsolicited AE frequencies and laboratory indexes were similar among the treatment groups. No vaccine-related SAEs were reported. The average percentage of rotavirus vaccine shedding in the infant vaccine groups was 5.00%. The post-3rd dose anti-rotavirus IgA antibody geometric mean concentrations (GMC) and seroconversion rate were higher in the vaccine groups than in the placebo groups. Conclusions The novel oral hexavalent rotavirus vaccine was generally well-tolerated in all adults, toddlers and infants, and the vaccine was immunogenic in infants.

2.
Kaohsiung J Med Sci ; 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560543

RESUMO

Cerebral ischemia-reperfusion (I/R) injury can induce the mitophagy of neurons in the ischemic brain. Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of various injuries, especially in cerebral I/R injury. The purpose of this study is to investigate the molecular mechanism of lncRNA RNA component of mitochondrial RNA processing endoribonuclease (RMRP) in cerebral I/R injury. The middle cerebral artery occlusion (MCAO) mouse model was established. Neurological deficit score, pathological structure, infarcted area, neuron number, cell apoptosis, and coagulation ability of MCAO mice were evaluated. The expressions of RMRP, microRNA (miR)-613, and ATG3 in MCAO mice were detected. The binding relationships among miR-613, RMRP, and ATG3 were predicted and verified. Neuro 2A (N2a) cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury. Cell viability and apoptosis assays were performed. The effects of miR-613, ATG3, and RMRP on I/R injury were verified by functional rescue experiments. JAK2/STAT3 phosphorylation level was detected. We found significantly upregulated RMRP and ATG3, and downregulated miR-613 expressions in MCAO mice. RMRP could escalate ATG3 mRNA expression through miR-613. RMRP knockdown promoted viability and inhibited apoptosis of OGD/R-treated N2a cells, which could be reversed by miR-613 inhibition or ATG3 overexpression. RMRP overexpression inhibited the activation of JAK2/STAT3 signaling pathway. We demonstrated that lncRNA RMRP competitively bound to miR-613, leading to the increase of ATG3 expression and the inhibition the JAK2/STAT3 pathway, thus promoting cerebral I/R injury in mice.

3.
Asian J Androl ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33533735

RESUMO

Repairing DNA double-strand breaks (DSBs) with homologous chromosomes as templates is the hallmark of meiosis. The critical outcome of meiotic homologous recombination is crossovers, which ensure faithful chromosome segregation and promote genetic diversity of progenies. Crossover patterns are tightly controlled and exhibit three characteristics: obligatory crossover, crossover interference, and crossover homeostasis. Aberrant crossover patterns are the leading cause of infertility, miscarriage, and congenital disease. Crossover recombination occurs in the context of meiotic chromosomes, and it is tightly integrated with and regulated by meiotic chromosome structure both locally and globally. Meiotic chromosomes are organized in a loop-axis architecture. Diverse evidence shows that chromosome axis length determines crossover frequency. Interestingly, short chromosomes show different crossover patterns compared to long chromosomes. A high frequency of human embryos are aneuploid, primarily derived from female meiosis errors. Dramatically increased aneuploidy in older women is the well-known "maternal age effect." However, a high frequency of aneuploidy also occurs in young women, derived from crossover maturation inefficiency in human females. In addition, frequency of human aneuploidy also shows other age-dependent alterations. Here, current advances in the understanding of these issues are reviewed, regulation of crossover patterns by meiotic chromosomes are discussed, and issues that remain to be investigated are suggested.

4.
Medicine (Baltimore) ; 100(6): e24481, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33578542

RESUMO

ABSTRACT: This study conducts a correlation exploration of CYP2C19 gene polymorphism and clopidogrel resistance in Han Chinese patients with cerebral infarction in Guizhou Region.A total of 270 Han Chinese patients with cerebral infarction, who were hospitalized in our hospital from January 2016 to January 2018, are selected. These patients were divided into 2 groups, clopidogrel resistance group (n = 60) and clopidogrel sensitive group (n = 210). According to the TEG results, the CYP2C19 gene polymorphism detection was carried out by using the PCR-RFLP method, while IL-6 level in the patient's blood was measured by using the ELISA method.The resistance group occupies 22.22%. The platelet inhibition ratio of the resistance group was 23 ±â€Š7%, which was significantly lower than that of the sensitive group (65 ±â€Š13%), and the difference was statistically significant (P < .05). The Logisitic regression analysis revealed that the history of diabetes, history of high blood pressure, increase in low density lipoprotein and CYP2C19 mutant gene were independent risk factors of clopidogrel resistance. After treatment, the serum IL-6 level of patients in the resistance group was 17.21 ±â€Š0.98 ng/L, which was significant higher than that of patients in the sensitive group (11.21 ±â€Š0.68 ng/L), and the difference was statistically significant (P < .05).Patients with cerebral infarction in Guizhou region have a higher occurrence rate of clopidogrel resistance. Clopidogrel resistance not only will weaken the anti-inflammatory action of the drug, but also correlates with the patient's CYP2C19 mutant gene and blood lipid level.

5.
Blood Purif ; : 1-11, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596582

RESUMO

BACKGROUND: Elevated levels of serum trimethylamine N-oxide (TMAO) have been previously linked to adverse cardiovascular (CV) and all-cause mortality in hemodialysis patients. However, the clinical significance of serum TMAO levels in patients treated with peritoneal dialysis (PD) is unclear. METHODS: A total of 1,032 PD patients with stored serum samples at baseline were enrolled in this prospective study. Serum concentrations of TMAO were quantified by ultra-performance liquid chromatography-tandem mass spectrometry. Cox proportional hazards and competing-risk regression models were performed to examine the association of TMAO levels with all-cause and CV mortality. RESULTS: The median level of serum TMAO in our study population was 34.5 (interquartile range (IQR), 19.8-61.0) µM. During a median follow-up of 63.7 months (IQR, 43.9-87.2), 245 (24%) patients died, with 129 (53%) deaths resulting from CV disease. In the entire cohort, we observed an association between elevated serum TMAO levels and all-cause mortality (adjusted subdistributional hazard ratio [SHR], 1.22; 95% confidence interval [95% CI], 1.01-1.48; p = 0.039) but not CV mortality. Further analysis revealed such association differed by sex; the elevation of serum TMAO levels was independently associated with increased risk of both all-cause (SHR, 1.37; 95% CI, 1.07-1.76; p = 0.013) and CV mortality (SHR, 1.41; 95% CI, 1.02-1.94; p = 0.038) in men but not in women. CONCLUSIONS: Higher serum TMAO levels were independently associated with all-cause and CV mortality in male patients treated with PD.

6.
Signal Transduct Target Ther ; 6(1): 64, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33589597

RESUMO

Genomic sequencing analysis of tumors provides potential molecular therapeutic targets for precision medicine. However, identifying a key driver gene or mutation that can be used for hepatocellular carcinoma (HCC) treatment remains difficult. Here, we performed whole-exome sequencing on genomic DNA obtained from six pairs of HCC and adjacent tissues and identified two novel somatic mutations of UBE2S (p. Gly57Ala and p. Lys63Asn). Predictions of the functional effects of the mutations showed that two amino-acid substitutions were potentially deleterious. Further, we observed that wild-type UBE2S, especially in the nucleus, was significantly higher in HCC tissues than that in adjacent tissues and closely related to the clinicopathological features of patients with HCC. Functional assays revealed that overexpression of UBE2S promoted the proliferation, invasion, metastasis, and G1/S phase transition of HCC cells in vitro, and promoted the tumor growth significantly in vivo. Mechanistically, UBE2S interacted with TRIM28 in the nucleus, both together enhanced the ubiquitination of p27 to facilitate its degradation and cell cycle progression. Most importantly, the small-molecule cephalomannine was found by a luciferase-based sensitive high-throughput screen (HTS) to inhibit UBE2S expression and significantly attenuate HCC progression in vitro and in vivo, which may represent a promising strategy for HCC therapy.

7.
J Clin Lab Anal ; : e23728, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33590889

RESUMO

BACKGROUND: Spondyloepiphyseal dysplasia congenita is an autosomal dominant cartilaginous dysplasia characterized by short trunk, abnormal epiphysis, and flattened vertebral body. Skeletal features of SEDC are present at birth and evolve over time. Other features of SEDC include myopia and/or retinal degeneration with retinal detachment and cleft palate. A mutation in the COL2A1 gene located in 12q13.11 is considered as one of the important causes of SEDC. In 2016, Barat-Houari et al. reported a large number of COL2A1 mutations. Among them, a non-synonymous mutation in COL2A1 exon 37, c.2437G>A (p. Gly813Arg), has been reported to cause SEDC in only one patient from France so far. METHODS: We followed up a patient with SEDC phenotype and his family members. The clinical manifestations, physical examination and imaging examination, including X-ray, CT and MRI, were recorded. The whole-exome sequencing was used to detect the patients' genes, and the pathogenic genes were screened out by comparing with many databases. RESULTS: We report a Chinese patient with SEDC phenotype characterized by short trunk, abnormal epiphysis, flattened vertebral body, narrow intervertebral space, dysplasia of the odontoid process, chicken chest, scoliosis, hip and knee dysplasia, and joint hypertrophy. Gene sequencing analysis showed that the patient had a heterozygous mutation (c.2437G>A; p. Gly813Arg) in the COL2A1 gene. No COL2A1 mutation or SEDC phenotype was observed in his family members. This is the first report of SEDC caused by this mutation in an East Asian family. CONCLUSION: This report provides typical clinical, imaging, and genetic evidence for SEDC, confirming that a de novo mutation in the COL2A1 gene, c.2437G>A (p. Gly813Arg), causes SEDC in Chinese population.

9.
Nanoscale ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595027

RESUMO

Colorectal cancer is one of the malignant tumors with high morbidity and lethality. Its efficient diagnosis and treatment has important significance. In this study, the orthotopic cancer model mouse, which could perfectly simulate clinical inflammatory colorectal cancer, was constructed by chemical induction. Based on this model, a new pH/ultrasonic dual-response, step-targeting and precisely controlled-release enteric-coated granule was designed for the combined sonodynamic (SDT)-chemotherapy. The enteric-coated granule was fabricated by enwrapping carboxymethyl chitosan (CMC) on folic acid-modified phospholipid (SLB-FA) encapsulating mesoporous silicon-coated gold nanoparticles loaded with chlorin (Ce6) and doxorubicin hydrochloride (DOX), titled as Au@mSiO2/Ce6/DOX/SLB-FA@CMC (GMCDS-FA@CMC). The diameter of the Au@mSiO2/Ce6/DOX/SLB-FA (GMCDS-FA) nanoprobe was 61.21 nm and that of the GMCDS-FA@CMC enteric-coated granule was 1.1 µm. MTT results showed that the cell survival rate was still as high as 76.55 ± 1.27% when the concentration of GMCDS-FA was up to 200 µg mL-1, which can indicate the low cytotoxicity of the nanoprobe. According to CT imaging, the enteric-coated granule had the highest concentration in the colorectum of the orthotopic cancer mouse after 7-9 h with oral administration, and was nearly metabolized out of the body after 24 h. The in vitro and in vivo experiments showed that the targeting enteric-coated granule had the best effect of treatment and desired prognosis after combined SDT-chemotherapy.

10.
J Am Chem Soc ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595314

RESUMO

Metal anodes represent as a prime choice for the coming generation rechargeable batteries with high energy density. However, daunting challenges including electrode volume variation and inevitable side reactions preclude them from becoming a viable technology. Here, a facile replacement reaction was employed to fabricate a three-dimensional (3D) interdigitated metal/solid electrolyte composite electrode, which not only provides a stable host structure for buffering the volume change within the composite but also prevents side reactions by avoiding the direct contact between active metal and liquid electrolyte. As a proof-of-concept demonstration, a 3D interdigitated zinc (Zn) metal/solid electrolyte architecture was fabricated via a galvanic replacement reaction between Zn metal foil and indium (In) chloride solution followed by electrochemical activation, featuring the interdigitation between metallic Zn and amorphous indium hydroxide sulfate (IHS) with high Zn2+ conductivity (56.9 ± 1.8 mS cm-1), large Zn2+ transference number (0.55), and high electronic resistivity [(2.08 ± 0.01) × 103 Ω cm]. The as-designed Zn/IHS electrode sustained stable electrochemical Zn plating/stripping over 700 cycles with a record-low overpotential of 8 mV at 1 mA cm-2 and 0.5 mAh cm-2. More impressively, it displayed cycle-stable performance with low overpotential of 10 mV under ultrahigh current density and areal capacity (20 mA cm-2, 20 mAh cm-2), which outperformed all the reported Zn metal electrodes in mild aqueous electrolyte. The fabrication of interdigitated metal/solid electrolyte was generalized to other metal pairs, including Zn/Sn and Zn/Co, which provide inspiration for next-generation Zn metal batteries with high energy density and reversibility.

11.
Arthritis Rheumatol ; 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33605085

RESUMO

OBJECTIVE: Collectin-11 (CL-11) is a soluble C-type lectin, a mediator of innate immunity. Its role in autoimmune disorders is unknown. The goal of this study was to determine the role of CL-11 in a mouse model of rheumatoid arthritis (RA). METHODS: A murine collagen-induced arthritis (CIA) model, combining both gene deletion of Colec11 and recombinant (rCL-11) treatment approaches were employed. Joint inflammation and tissue destruction, circulating levels of inflammatory cytokines and adaptive immune responses were assessed in CIA mice. Splenic CD11c+ cells were used to examine the influence of CL-11 on antigen presenting cell (APC) function. Serum levels of CL-11 in RA patients were also examined. RESULTS: Colec11-/- mice developed more severe arthritis than WT mice (as determined by disease incidence, clinical arthritis scores and histopathology; P<0.05). Disease severity is associated with significantly enhanced APC activation, Th1/Th17 responses, pathogenic IgG2a production and joint inflammation, as well as elevated circulating levels of inflammatory cytokines. In vitro analysis of CD11c+ cells revealed that CL-11 is critical for suppression of APC activation and function. Pharmacological treatment of mice with rCL-11 reduced the severity of CIA in mice. Analysis of human blood samples revealed that serum levels of CL-11 was lower in RA patients (n=51) compared to healthy controls (n=53), a serum CL-11 reduction also displays a negative relationship with DAS28, ESR and CRP (P<0.05). CONCLUSION: Our findings demonstrate a novel role for CL-11 in protection against RA, suggesting the underlying mechanism involved suppression of APC activation and subsequent T cell responses.

12.
Inorg Chem ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33591741

RESUMO

A bifunctional ligand strategy for modification of the functional pores is of great significance in the structural design of metal-organic frameworks (MOFs). Herein, a new 2-fold interpenetrated "pillared-layer" 3D Co-MOF, {[Co(HL)(4,4'-bipy)]·DMF·2H2O}n (1), was successfully synthesized by using two kinds of ligands, imidazolecarboxylic acid and pyridine. The metal-carboxylic layers are pillared by the 4,4'-bipy ligand, displaying a 3D framework with rectangular 3D channels (high BET surface of 190.9 m2 g-1 and maximum aperture of 3.9 Å) that are decorated with abundant uncoordinated N and O atoms. 1 shows good water stability and thermal stability (320 °C). The proper pores and active sites endowed 1 with a selective adsorption of Congo red in aqueous solution. In addition, a high CO2 adsorption capacity and an excellent CO2 chemical conversion were observed.

13.
J Cell Biol ; 220(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535228

RESUMO

NLRC4 inflammasome activation and the subsequent maturation of IL-1ß and IL-18 are critical for protection against infection by bacterial pathogens. The epigenetic regulator Brd4 has emerged as a key player in inflammation by regulating the expression of inflammatory cytokines. However, whether Brd4 has any role in inflammasome activation remains undetermined. Here, we demonstrated that Brd4 is an important regulator of NLRC4 inflammasome activation in response to Salmonella typhimurium infection. Brd4-deficient bone marrow-derived macrophages (BMDMs) displayed impaired caspase-1 activation, ASC oligomerization, IL-1ß maturation, gasdermin-D cleavage, and pyroptosis in response to S.typhimurium infection. RNA sequencing and RT-PCR results revealed that the transcription of Naips was decreased in Brd4-deficient BMDMs. Brd4 formed a complex with IRF8/PU.1 and bound to the IRF8 and PU.1 binding motifs on the promoters of Naips to maintain the expression of Naips. Furthermore, myeloid lineage-specific Brd4 conditional knockout mice were more susceptible to S.typhimurium infection with increased mortality, bacterial loads, and tissue damage; impaired inflammasome-dependent cytokine production; and pyroptosis. Our studies identify a novel function of Brd4 in innate immunity by controlling inflammasome-mediated cytokine release and pyroptosis to effectively battle S.typhimurium infection.

14.
PLoS Negl Trop Dis ; 15(2): e0009100, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33539386

RESUMO

BACKGROUND: Oncomelania snails serve as the sole intermediate host for Schistosoma japonicum, one of the most important neglected tropical diseases in the world. Afforestation suppression of the Oncomelania hupensis snail has been a long-term effective national strategy to decrease snail density in China. Many previous studies have made clear that vegetation (biotic factors) and soil (abiotic factors) were the basic requirements for snail survival on beaches. Moreover, a lot of research on snail control has been focused on the specific influencing environmental factors for snail survival, such as the vegetation community structure, species composition, diversity index, and the physical and chemical properties of the soil. Most of the existing research has studied the influence of a single factor on snail population density. Conversely, there have been only a few studies focused on the food sources and food composition of the snails. The current research situation on snail control has indicated that the mechanisms underlying ecological snail control have not been systematically characterized. The question of whether biotic or abiotic factors were more important in influencing snail survival remains unclear. Afforestation on beaches has significantly suppressed snail density in China so far. In this study, we proposed that the reduction of snail density was not affected by a single factor but by the interactions of multiple related factors introduced by afforestation. Moreover, different biotic and abiotic factors have significantly different effects on snail control. Therefore the goal of this study was to evaluate the relative importance and interactions of related biotic and abiotic factors on snail density. Methods: Four major vegetation communities: Sedge, Reed, Artificial poplar (3 years of age) and Artificial poplar (5 years of age), on the beaches of the Yangtze River in China were selected for vegetation and snail surveys, as well as for soil sampling. Structural Equation Model (SEM) analysis was used to assess the interactions of biotic and abiotic factors in the context of snail ecology. The soil properties were considered as abiotic factors, while algae of Chlorophyta, Cyanophyta and Bacillariophyta phyla were considered to be biotic factors. In the path analysis, the total effect between the variables was the sum of the direct and indirect effects. RESULTS: The snail density had significant correlations with soil properties, such as water content, bulk density, capillary porosity and pH value, as well as with all three types of soil algae, Chlorophyta, Cyanophyta, and Bacillariophyta. Snail density had a direct negative relationship with capillary porosity and soil bulk density, an indirect negative relationship with soil pH value and an indirect positive relationship with soil water content via soil algae. Meanwhile, as an important food source for the snail, the Chlorophyta, Cyanophyta and Bacillariophyta algae had a significant positive correlation with snail density. High soil pH had a negative impact on Chlorophyta, Bacillariophyta, while soil water content had a positive impact on Chlorophyta, and soil bulk density had a negative impact on Cyanophyta. In addition, the soil pH value and soil bulk density both had negative correlations with soil water content. CONCLUSION: Afforestation of the beach environment can significantly reduce the snail population density by altering ecological factors. Soil algae (biological factors) might be the key element that drives ecological snail control. As important habitat determinants, the impact of the properties of the soil (non-biological factors) on the snail population was largely mediated through soil algae.

15.
J Gynecol Oncol ; 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33559412

RESUMO

OBJECTIVE: Aimed to construct an immune-related risk signature and nomogram predicting endometrial cancer (EC) prognosis. METHODS: An immune-related risk signature in EC was constructed using the least absolute shrinkage and selection operator regression analysis based on The Cancer Genome Atlas and Gene Expression Omnibus databases. A nomogram integrating the immune-related genes and the clinicopathological characteristics was established and validated using the Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve to predict the overall survival (OS) of EC patients. The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) R tool was used to explore the immune and stromal scores. RESULTS: CCL17, CTLA4, GPI, HDGF, HFE2, ICOS, IFNG, IL21R, KAL1, NR3C1, S100A2, and S100A9 were used in developing an immune-related risk signature evaluation model. The Kaplan-Meier curve indicated that patients in the low-risk group had better OS (p<0.001). The area under the ROC curve (AUC) values of this model were 0.737, 0.764, and 0.782 for the 3-, 5-, and 7-year OS, respectively. A nomogram integrating the immune-related risk model and clinical features could accurately predict the OS (AUC=0.772, 0.786, and 0.817 at 3-, 5-, and 7-year OS, respectively). The 4 immune cell scores were lower in the high-risk group. Forkhead box P3 (FOXP3) and basic leucine zipper ATF-like transcription factor (BATF) showed a potential significant role in the immune-related risk signature. CONCLUSION: Twelve immune-related genes signature and nomogram for assessing the OS of patients with EC had a good practical value.

16.
World J Surg Oncol ; 19(1): 42, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563292

RESUMO

BACKGROUND: Xpert Bladder Cancer is a detection method developed in recent years, designed with the functions of integrating sample automatically, nucleic acid amplification, and target sequence detection. It is a urine assay targeting five mRNAs (CRH, IGF2, UPK1B, ANXA10, and ABL1). The purpose of this article is to review the accuracy of Xpert Bladder Cancer in the follow-up diagnosis of bladder cancer and evaluate the role of Xpert Bladder Cancer in detecting the recurrence of non-muscle-invasive bladder cancer in the round. METHODS: In the database of Embase, PubMed, Web of Science, and Cochrane Library, the articles published up to October 13, 2020, were searched and screened based on the exclusion and inclusion criteria, and data were extracted from the included studies. The sensitivity, specificity, negative likelihood ratio, positive likelihood ratio summary of receiver operating characteristic curves, and diagnostic odds ratio were combined by the Meta-DiSc 1.4 software. The Stata 12.0 software was used to obtain the assessment of publication bias. RESULTS: A total of 8 articles involving eight fourfold tables were finally identified. The pooled sensitivity and specificity of Xpert Bladder Cancer in the diagnosis of bladder cancer were 0.71 and 0.81, respectively. The positive likelihood ratio and negative likelihood ratio were 3.74 and 0.34, respectively. The area under the curve was 0.8407. The diagnostic odds ratio was 11.99. Deeks' funnel plot asymmetry test manifested no publication bias. CONCLUSIONS: In summary, Xpert Bladder Cancer presents high accuracy and specificity in monitoring bladder cancer compared with cystoscopy. More researches are still required to further confirm this conclusion.

17.
Hum Immunol ; 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33612390

RESUMO

Nanopore sequencing has been investigated as a rapid and cost-efficient option for HLA typing in recent years. Despite the lower raw read accuracy, encouraging typing accuracy has been reported, and long reads from the platform offer additional benefits of the improved phasing of distant variants. The newly released R10.3 flow cells are expected to provide higher read-level accuracy than previous chemistries. We examined the performance of R10.3 flow cells on the MinION device in HLA typing after enrichment of target genes by multiplexed PCR. We also aimed to mimic a 1-day workflow with 8-24 samples per sequencing run. A diverse collection of 102 unique samples were typed for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3/4/5 loci. The concordance rates at 2-field and 3-field resolutions were 99.5% (1836 alleles) and 99.3% (1710 alleles). We also report important quality metrics from these sequencing runs. Continued research and independent validations are warranted to increase the robustness of nanopore-based HLA typing for broad clinical application.

18.
Drug Des Devel Ther ; 15: 557-576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603345

RESUMO

Purpose: The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. Methods: We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. Results: The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. Conclusion: Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33618923

RESUMO

BACKGROUND AND AIMS: Iron deficiency is prevalent, but there is limited data about the relationship between iron status and poor outcomes in chronic kidney disease patients undergoing peritoneal dialysis (PD). We aimed to investigate the association between iron status and mortality in PD patients. METHODS AND RESULTS: This retrospective study was conducted on incident PD patients from January 2006 to December 2016 and followed up until December 2018. Patients were categorized into four groups according to baseline serum transferrin saturation (percent) and ferritin levels (ng/ml): reference (20-30%, 100-500 ng/ml), absolute iron deficiency (<20%, <100 ng/ml), function iron deficiency (FID) (<20%, >100 ng/ml), and high iron (>30%, >500 ng/ml). Among the 1173 patients, 77.5% had iron deficiency. During a median follow-up period of 43.7 months, compared with the reference group, the FID group was associated with increased risk for all-cause [adjusted hazard ratio (aHR) 1.87, 95% confidence interval (95% CI) 1.05-3.31, P = 0.032], but not cardiovascular (CV) mortality. Additionally, the high iron group had a more than four-fold increased risk of both all-cause and CV mortality [aHR 4.32 (95% CI 1.90-9.81), P < 0.001; aHR 4.41 (95% CI 1.47-13.27), P = 0.008; respectively]. CONCLUSION: FID and high iron predict worse prognosis of patients on PD.

20.
Biosci Rep ; 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33619567

RESUMO

Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined. Using liquid chromatography-tandem mass spectrometry and bioinformatic prediction tools, 630 extracellular proteins and 251 cell membrane proteins of Che and Cps were identified in the classical secretion pathway in this study. In the non-classical secretion pathway, 79 extracellular proteins were identified. The cohort of proteins belonged to 364 OrthoMCL clusters, with the majority (62%) present in both species, and a subset unique to Che (19%) and Cps (20%). These extracellular proteins were predicted to play important roles in cell structure, regulation, metabolism, and pathogenesis. A total of 124 proteins were identified as putative effectors. Many of them are orthologs of proteins with documented roles in suppressing host defense and facilitating infection processes in other pathosystems, such as SnodProt1-like proteins in the OrthoMCL cluster OG5_152723 and PhiA-like cell wall proteins in the cluster OG5_155754. This exploratory study provides a repository of secreted proteins and putative effectors that can provide insights into the virulence mechanisms of the boxwood blight pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA