Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.998
Filtrar
1.
Sci Total Environ ; 919: 170831, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38340859

RESUMO

The increasing risk of climate change in the Anthropocene underscores the importance and urgency of enhancing resilience to climate-related disasters. However, the assessment of resilience to disasters with traditional statistical data is spatially inexplicit and timeliness inadequate, and the determinants of resilience remain unclear. In this study, we employed spatially detailed daily nighttime light images to assess socio-economic disturbance and track near real-time recovery of coastal communities in Southeast China following super typhoon Meranti. Furthermore, we constructed a "exposure-sensitivity-adaptive capacity" framework to explore the role of key factors in shaping spatiotemporal patterns of recovery. Our case study showed a significant spatial disparity in socio-economic recovery in the post-typhoon period. Low-urbanized areas recovered relatively rapidly with the weakest socio-economic disturbance they suffered, and middle-urbanized areas experienced the slowest recovery despite the disruption being moderate. Remarkably, high-urbanized areas were the most severely impacted by the typhoon but recovered fast. The exposure to hazard, socio-economic sensitivity, and adaptive capacity in communities explained well the spatial disparity of resilience to the typhoon. Maximum wind speed, percentage of the elderly, and percentage of low-income population significantly negatively correlated with resilience, whereas commercial activity intensity, spatial accessibility of hospitals, drainage capacity, and percentage of green open space showed significantly positive relationships with resilience. Notably, the effects of key factors on resilience were spatially heterogeneous. For instance, maximum wind speed exhibited the strongest influence on resilience in middle-urbanized areas, while the effect of commercial activity intensity was most pronounced in low-urbanized areas. Conversely, spatial accessibility of hospitals and drainage capacity showed the strongest influence in high-urbanized areas. Our study highlights the necessity of linking post-disaster recovery with intensity of hazard, socio-economic sensitivity, and adaptive capacity to understand community resilience for better disaster risk reduction.

2.
Sci Total Environ ; 919: 170494, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342449

RESUMO

Heavy metal migration behaviors and mechanisms in soils are important for pollution control and remediation. However, there are few related studies in arid areas under extreme weather patterns. In this study, we developed a one-dimensional continuous point source unsaturated solute transport model, and utilized Hydrus-1D to simulate the transport of Cu, As and Zn, in the pack gas zones of soils within the impact areas of two typical mining areas in Inner Mongolia. The results show that the soil has a significant interception capacity, with a short heavy metal vertical migration distance of ≤100 cm. Soil texture and heavy metal sorption affinity are two key factors that influence heavy metal transport. In soils with high contents of sands but low contents of clays, heavy metals have large mobility and thus migrate deeper and are more evenly distributed in the soil profile. The migration of different heavy metals in the same soil also varies considerably, with large migration depth for metals having low binding affinities onto soils. Scenario analysis for extreme drought and rainfall shows that, rainfall amount and intensity are positively correlated with heavy metal transport depth and negatively correlated with the peak concentration. Increasing rainfall/intensity results in a more uniform distribution of heavy metals, and lower profile concentrations owing to enhanced horizontal dispersion of surface runoff. When the total amount and intensity of rainfall remain constant, continuous or intermittent rainfall only affects the transport process but has almost no effect on the final pollutant concentration redistribution in the soil. These results provide theoretical data for estimating the degree of heavy metal pollution, and help design control and remediation strategies for polluted soils.

3.
J Pain ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354968

RESUMO

Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder (PTSD), represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation (LTP) as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents (EPSCs) in the BLA-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlight that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.

4.
J Environ Manage ; 354: 120332, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364539

RESUMO

Dewatering is the first step in the subsequent treatment and disposal of food waste digestate (FWD). However, FWD is difficult to dewatering. In this study, persulfate was synergistic oxidized by ozone to improve digestate dewaterability. The optimal conditions was at pH = 3, O3=40 mg/g TS and PDS=0.1 g/g TS, under which the reductions in the normalized capillary suction time (NCST) and bound moisture (BM) of the FWD were 89.97% and 65.79%, respectively. Hydrophilic functional groups (oxygen- and nitrogen-containing groups) and hydrophilic protein molecular structures were decomposed by the reactive species of sulfate radical (SO4·-) and hydroxyl radicals (·OH) generated in the ozone-persulfate oxidation process, disrupting the binding between EPS and water molecules. The contributions of SO4·- and ·OH to digestate dewaterability were 42.51% and 28.55%. In addition, the introduction of H+ reduced electrostatic repulsion and contributed to the condensation of digestate flocs. The environmental implication assessment and economic analysis suggested that the O3/PDS oxidation process was cost-effective and has a low environmental implication when applied to the FWD dewaterability improvement process. These results can serve as a reference for the management of FWD and further improvement of FWD treatment and disposal efficiency.

5.
Eur J Med Chem ; 268: 116207, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364715

RESUMO

The inhibition of P-glycoprotein (P-gp) has emerged as an intriguing strategy for circumventing multidrug resistance (MDR) in anticancer chemotherapy. In this study, we have designed and synthesized 30 indole-selenides as a new class of P-gp inhibitors based on the scaffold hopping strategy. Among them, the preferred compound H27 showed slightly stronger reversal activity (reversal fold: 271.7 vs 261.6) but weaker cytotoxicity (inhibition ratio: 33.7% vs 45.1%) than the third-generation P-gp inhibitor tariquidar on the tested MCF-7/ADR cells. Rh123 accumulation experiments and Western blot analysis demonstrated that H27 displayed excellent MDR reversal activity by dose-dependently inhibiting the efflux function of P-gp rather than its expression. Besides, UIC-2 reactivity shift assay revealed that H27 could bind to P-gp directly and induced a conformation change of P-gp. Moreover, docking study revealed that H27 matched well in the active pockets of P-gp by forming some key H-bonding interactions, arene-H interactions and hydrophobic contacts. These results suggested that H27 is worth to be a starting point for the development of novel Se-containing P-gp inhibitors for clinic use.

6.
Front Genet ; 15: 1277541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333620

RESUMO

Background: Thyroid hormone receptor-associated protein 3 (THRAP3) is of great significance in DNA damage response, pre-mRNA processing, and nuclear export. However, the biological activities of THRAP3 in pan-cancer remain unexplored. We aimed to conduct a comprehensive analysis of THRAP3 and validate its expression levels in lung cancer. Methods: A pan-cancer analysis was conducted to study the correlation of THRAP3 expression with clinical outcome and the tumor microenvironment based on the available bioinformatics databases. The protein levels of THRAP3 were explored in lung cancer by immunohistochemistry (IHC) analysis. Single-cell sequencing (ScRNA-seq) analysis was employed to investigate the proportions of each cell type in lung adenocarcinoma (LUAD) and adjacent normal tissues, along with the expression levels of THRAP3 within each cell type. Results: THRAP3 is upregulated in multiple cancer types but exhibits low expression in lung squamous cell carcinoma (LUSC). immunohistochemistry results showed that THRAP3 is a lowly expression in LUAD and LUSC. THRAP3 elevation had a poor prognosis in kidney renal clear cell carcinoma and a prolonged survival time in kidney chromophobe, brain lower-grade glioma and skin cutaneous melanoma, as indicated by the KM curve. Single-cell analysis confirmed that the proportions of T/B cells, macrophages, and fibroblasts were significantly elevated in LUAD tissues, and THRAP3 is specifically overexpressed in mast cells. Conclusion: Our findings uncover that THRAP3 is a promising prognostic biomarker and immunotherapeutic target in multiple cancers, but in LUAD and LUSC, it may be a protective gene.

7.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 179-184, 2024 Feb 18.
Artigo em Chinês | MEDLINE | ID: mdl-38318915

RESUMO

OBJECTIVE: To analyze the clinical and radiographic effectiveness of a calcium silicate-based bioactive ceramic iRoot BP Plus® pulpotomy of immature permanent teeth with complicated crown fracture and to evaluate the factors influencing its long-term success rate. METHODS: The digital medical records of patients under 13 years old who had undergone iRoot BP Plus® pulpotomy in the Department of Oral Emergency or the First Clinical Division, Peking University School and Hospital of Stomatology from March 2017 to September 2022 due to complicated crown fracture of anterior teeth, and had taken at least one post-operation apical radiograph were reviewed. The clinical and radiographic information at the initial examination and follow-up period were obtained, including crown color, mobility, percussion, cold test (partial pulpotomy teeth), dental restoration, fistula, swelling or inflammation of the gingival tissue, the formation of apical foramen, pathologic radiolucency and calcification of pulp chamber or root canal obliteration. Data were tested by Fisher exact test and a multiple comparison. RESULTS: In the study, 64 patients including 37 males (57.8%) and 27 females (42.2%) with a mean age of 9.1 years : ere finally enrolled. The total number of permanent teeth that received pulpotomy was 75, and the average follow-up time was 19.3 months. The success rate was 93.1% with the time interval between dental injury and treatment in 24 h, while the success rate dropped to 88.2% with the time intervals beyond 24 h. The time intervals did not significantly affect the pulp survival rate (P=0.61) after pulpotomy (partial or coronal). The success rate 6 months after pulpotomy was 96. 0%, and one-year success rate was 94. 7%. A total of 23 cases were reviewed for more than 2 years after pulpotomy, and 6 cases failed. The mobility had no significant effect on the success rate (P=0.28). Pulp chamber calcification and pulp canal obli-teration were not observed in all the post-operative radiographs. CONCLUSION: The one year clinical and radiographic success rates obtained in this study indicate that iRoot BP Plus® is an appropriate pulp capping material option for pulpotomy treatment of complicated crown fracture in immature permanent teeth without displacement injuries. This technique has broad promotional value.


Assuntos
Pulpotomia , Fraturas dos Dentes , Masculino , Criança , Feminino , Humanos , Adolescente , Pulpotomia/métodos , Silicatos/uso terapêutico , Compostos de Cálcio/uso terapêutico , Dentição Permanente , Coroas , Fraturas dos Dentes/complicações , Fraturas dos Dentes/terapia , Cerâmica , Resultado do Tratamento , Óxidos
8.
Cancers (Basel) ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339252

RESUMO

Ovarian cancer (OCa) is the most lethal form of gynecologic cancer, and the tumor heterogeneities at the molecular, cellular, and tissue levels fuel tumor resistance to standard therapies and pose a substantial clinical challenge. Here, we tested the hypothesis that the heightened basal endoplasmic reticulum stress (ERS) observed in OCa represents an exploitable vulnerability and may overcome tumor heterogeneity. Our recent studies identified LIPA as a novel target to induce ERS in cancer cells using the small molecule ERX-41. However, the role of LIPA and theutility of ERX-41 to treat OCa remain unknown. Expression analysis using the TNMplot web tool, TCGA data sets, and immunohistochemistry analysis using a tumor tissue array showed that LIPA is highly expressed in OCa tissues, compared to normal tissues. ERX-41 treatment significantly reduced the cell viability and colony formation ability and promoted the apoptosis of OCa cells. Mechanistic studies revealed a robust and consistent induction of ERS markers, including CHOP, elF2α, PERK, and ATF4, upon ERX-41 treatment. In xenograft and PDX studies, ERX-41 treatment resulted in a significant reduction in tumor growth. Collectively, our results suggest that ERX-41 is a novel therapeutic agent that targets the LIPA with a unique mechanism of ERS induction, which could be exploited to treat heterogeneity in OCa.

9.
Int J Biol Macromol ; 262(Pt 1): 130070, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38340944

RESUMO

This study aimed to prepare carrageenan/sodium alginate double-stabilized layers of zein nanoparticles loaded with daidzein using ultrasound technology to investigate the effect of ultrasound treatment on the stability of composite nanoparticles and encapsulation of daidzein. Compared with composite nanoparticles without ultrasound treatment, the encapsulation efficiency of nanoparticles was increased (90.36 %) after ultrasound treatment (320 W, 15 min). Ultrasound treatment reduced the particle size and PDI of nanoparticles and improved the stability and solubility of nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanoparticles treated with ultrasound were smooth spherical and uniformly distributed. Fourier transform infrared spectroscopy (FTIR) results showed that the main forces that form nanoparticles are hydrogen bonding, electrostatic interactions and hydrophobic interactions. Fluorescence and CD chromatography showed that ultrasound treatment alters the secondary structure of zein and maintains nanoparticle stability. Encapsulation of daidzein in nanocarriers with ultrasound treatment can effectively scavenge DPPH and ABTS free radicals, improve antioxidant activity, and realize the slow release of daidzein in the gastrointestinal tract. The results showed that ultrasonication helps the construction of hydrophobic bioactives delivery carriers and provides better protection for unstable bioactives.

10.
Poult Sci ; 103(4): 103379, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38306917

RESUMO

The presence of a significant number of melanocytes in the ovary and follicular membrane of Silky Fowl suggests their potential involvement in follicle development. Currently, there is a lack of available data regarding to the isolation of primary melanocytes from adult chickens. To date, primary melanocytes and their in vitro culture system have been successfully conducted in the peritoneum of chicken embryos. Herein, melanocytes from silky fowl ovaries were isolated and identified. Silky Fowl ovaries were obtained by mixed digestion of 0.1% collagenase II and 0.25% trypsin-EDTA. Melanocytes could be further purified and cultured up to 5 generations in vitro. RNA-seq analysis was used to investigate whether there were differences in the functional status of melanocytes in different tissues and developmental stages. Consequently, differential gene expressions between peritoneal and ovarian melanocytes were compared. These findings demonstrated that the Silky Fowl ovary had higher expression levels of genes involved in the production of sexual hormones and melanogenesis, while those of melanocytes derived from the peritoneum were involved in amino acid metabolism, lipid synthesis, and overall metabolic rates. This suggests that the role of melanocytes is dependent on the origin tissue and developmental stage, and is tightly connected to the function of the specific source tissue from which the cells were derived. This study provides a method for isolating adult melanocytes and serve as a basis for further investigate the effect of SFOM on germ cells.

11.
Nat Commun ; 15(1): 1118, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320994

RESUMO

Immunotherapy with immune checkpoint blockade (ICB) for glioblastoma (GBM) is promising but its clinical efficacy is seriously challenged by the blood-tumor barrier (BTB) and immunosuppressive tumor microenvironment. Here, anti-programmed death-ligand 1 antibodies (aPD-L1) are loaded into a redox-responsive micelle and the ICB efficacy is further amplified by paclitaxel (PTX)-induced immunogenic cell death (ICD) via a co-encapsulation approach for the reinvigoration of local anti-GBM immune responses. Consequently, the micelles cross the BTB and are retained in the reductive tumor microenvironment without altering the bioactivity of aPD-L1. The ICB efficacy is enhanced by the aPD-L1 and PTX combination with suppression of primary and recurrent GBM, accumulation of cytotoxic T lymphocytes, and induction of long-lasting immunological memory in the orthotopic GBM-bearing mice. The co-encapsulation approach facilitating efficient antibody delivery and combining with chemotherapeutic agent-induced ICD demonstrate that the chemo-immunotherapy might reprogram local immunity to empower immunotherapy against GBM.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Micelas , Inibidores de Checkpoint Imunológico/uso terapêutico , Polímeros/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Paclitaxel/uso terapêutico , Imunoterapia , Microambiente Tumoral
12.
Int Immunopharmacol ; 129: 111655, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38340423

RESUMO

Wear particles generated from the surface of implanted prostheses can lead to peri-implant osteolysis and subsequent aseptic loosening. In the inflammatory environment, extensive formation and activation of osteoclasts are considered the underlying cause of peri-implant osteolysis. Current medications targeting osteoclasts for the treatment of particle-induced bone resorption are not ideal due to significant side effects. Therefore, there is an urgent need to develop more effective drugs with fewer side effects. Norcantharidin (NCTD), a derivative of cantharidin extracted from blister beetles, is currently primarily used for the treatment of solid tumors in clinical settings. However, the potential role of NCTD in treating aseptic loosening of the prosthesis has not been reported. In this study, the in vitro results demonstrated that NCTD could effectively inhibit the formation of osteoclasts and bone resorption induced by the RANKL. Consistently, NCTD strongly inhibited RANKL-induced mRNA and protein levels of c-Fos and NFATc1, concomitant with reduced expression of osteoclast specific genes including TRAP, CTR and CTSK. The in vivo data showed that NCTD exerted significant protective actions against titanium particle-induced inflammation and subsequent osteolysis. The molecular mechanism investigation revealed that NCTD could suppress the activations of RANKL-induced MAPK (p38, ERK). Overall, these findings support the potential use of NCTD for the treatment of aseptic loosening following total joint arthroplasty.

13.
PeerJ ; 12: e16686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188153

RESUMO

Background: The Cangshan National Nature Reserve of Dali City was adopted as the research object to clarify the vertical distribution characteristics of soil organic carbon (SOC) and vegetation types at different elevations in western Yunnan. Methods: The contents of SOC, light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and water-soluble organic carbon (WSOC) in the 0-30 cm soil layer at different elevations (2,400, 2,600, 2,800, 3,000, 3,200, 3,400, and 3,600 m) were determined, and the above-ground vegetation types at different elevations were investigated. Results: Results showed that the SOC content was the highest in 0-20 cm surface soil and gradually decreased with the deepening of the soil layer. It increased then decreased with the increase in elevation, and it peaked at 3,000 m. The LFOC content was between 1.28 and 7.3515 g kg-1. It exhibited a decreasing trend and little change in profile distribution. The HFOC content ranged between 12.9727 and 23.3708 g kg-1; it increased then decreased with the increase in profile depth. The WSOC content was between 235.5783 and 392.3925 mg kg-1, and the response sensitivity to elevation change was weak. With the increase in elevation, WSOC/SOC and LFOC/SOC showed a similar trend, whereas HFOC presented an opposite trend. This observation indicates that the active organic carbon content at 3,600 m was lower than that at 2,400 m, and the middle elevation was conducive to the storage of active organic carbon. Meanwhile, the physical and chemical properties of soil affected the distribution of organic carbon to a certain extent. The vegetation type survey showed that the above-ground dominant species within 2,400-2,800 m were Pinus yunnanensis and Pinus armandii. Many evergreen and mixed coniferous broadleaf forests were distributed from 3,000 m to 3,200 m. Species of Abies delavayi were mainly distributed from 3,400 m to 3,600 m. This research serves as a reference for the study of forest soil carbon stability in high-elevation areas and plays an important role in formulating reasonable land use management policies, protecting forest soil, reducing organic carbon loss, and investigating the carbon sequestration stability of forest ecosystems.


Assuntos
Carbono , Pinus , Ecossistema , Solo , China , Carvão Vegetal , Água
14.
Psychol Res Behav Manag ; 17: 39-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192274

RESUMO

Background: Enhancing abstinence motivation of drugs is an effective strategy for the rehabilitation of people who used drugs and prevention of drug use relapse. However, little is known about its risk and protective factors. This study aimed to examine the potential intrapersonal (ie, impulsivity, depression, anxiety, sleep quality) and interpersonal factors (ie, perceived social support) of abstinence motivation among people who completed the community rehabilitation treatment. Methods: A total of 222 participants (mean age = 43; male = 89.2%) were recruited from eleven communities located in Wenzhou, China. Data were collected using a self-reported questionnaire in counselling room settings between April and June 2021. Results: The proportions of participants with depression, anxiety, and poor sleep quality were 38.8%, 19.5%, and 21.2%, respectively. Age and family history of physical disease were significant background factors of abstinence motivation. Impulsivity, depressive symptoms, anxiety symptoms, and poor quality of sleep were negatively associated with abstinence motivation. Perceived social support from family and important others was positively associated with abstinence motivation. Structural equation modeling fitted the data well in which impulsivity and perceived social support were both associated with abstinence motivation indirectly through mental health problems. Conclusion: The identified psychosocial factors should be addressed in community rehabilitation treatment and follow-up service to enhance abstinence motivation and the long-term effectiveness of the treatment.

15.
Rice (N Y) ; 17(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170415

RESUMO

Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.

16.
NPJ Parkinsons Dis ; 10(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172178

RESUMO

REM sleep behavior disorder (RBD) symptoms in Parkinson's disease (PD) suggest both a clinically and pathologically malignant subtype. However, whether RBD symptoms are associated with alterations in the organization of whole-brain intrinsic functional networks in PD, especially at early disease stages, remains unclear. Here we use resting-state functional MRI, coupled with graph-theoretical approaches and network-based statistics analyses, and validated with large-scale network analyses, to characterize functional brain networks and their relationship with clinical measures in early PD patients with probable RBD (PD+pRBD), early PD patients without probable RBD (PD-pRBD) and healthy controls. Thirty-six PD+pRBD, 57 PD-pRBD and 71 healthy controls were included in the final analyses. The PD+pRBD group demonstrated decreased global efficiency (t = -2.036, P = 0.0432) compared to PD-pRBD, and decreased network efficiency, as well as comprehensively disrupted nodal efficiency and whole-brain networks (all eight networks, but especially in the sensorimotor, default mode and visual networks) compared to healthy controls. The PD-pRBD group showed decreased nodal degree in right ventral frontal cortex and more affected edges in the frontoparietal and ventral attention networks compared to healthy controls. Furthermore, the assortativity coefficient was negatively correlated with Montreal cognitive assessment scores in the PD+pRBD group (r = -0.365, P = 0.026, d = 0.154). The observation of altered whole-brain functional networks and its correlation with cognitive function in PD+pRBD suggest reorganization of the intrinsic functional connectivity to maintain the brain function in the early stage of the disease. Future longitudinal studies following these alterations along disease progression are warranted.

17.
Mol Cytogenet ; 17(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173004

RESUMO

BACKGROUND: Uniparental disomy (UPD) is a rare genetic condition leading to potential disease risks. Maternal UPD of chromosome 6 upd(6)mat is exceptionally rare, with limited cases reported. This study reported two new cases of upd(6)mat and reviewed the literature of previous cases. CASE PRESENTATION: Both cases exhibited intrauterine growth restriction (IUGR), and genetic analysis confirmed upd(6)mat in each case. The literature review identified a total of 19 cases. IUGR and preterm labor were the most common two symptoms observed, and additional anomalies and genetic variations were also reported in some cases. CONCLUSION: upd(6)mat is potentially associatied with IUGR, but the precise genotype-phenotype relationship remains unclear. The cases with upd(6)mat may present clinical features due to imprinting disorders.

18.
Phytopathology ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38205803

RESUMO

A phenomenon of pathogenicity attenuation of Plasmopara viticola was consistently observed during its subculture on grape. In order to clarify the causes of attenuated pathogenicity of P. viticola, culturable microbes were isolated from the P. viticola mass (mycelia, sporangiophores and sporangia, MSS) in each generation and tested for their biocontrol efficacies on grape downy mildew (GDM). The results showed that the incidence of GDM decreased with the increase in the number of subculture times on both vineyard collected leaves and grape leaves from in vitro grown seedlings. The number of culturable microbial taxa on the surface of P. viticola decreased while the population densities of four specific strains, i.e., K2, K7, P1 and P5 increased significantly with the increase in subculture times. Compared with the control, biocontrol efficacies of the bacterial strain K2 reached 87.5% and those of both fungal strains P1 and P5 reached 100.0%. Based on morphological characteristics and molecular sequences, strains K2, P1 and P5 were identified as Curtobacterium herbarum, Thecaphora amaranthi and Acremonium sclerotigenum, respectively, and these three strains survived very well and multiplied on the surface of P. viticola. As the number of times P. viticola was subcultured increased, all three of these strains became the predominant strains, leading to greater P. viticola inhibition, attenuated P. viticola pathogenicity, and effective GDM biological control. To the best of our knowledge, this is the first report of C. herbarum and T. amaranthi having biological control activity against GDM.

19.
Glob Chall ; 8(1): 2300163, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223896

RESUMO

The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields-Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy-are discussed.

20.
BMC Genomics ; 25(1): 70, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233814

RESUMO

BACKGROUND: Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites. RESULTS: In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds. CONCLUSIONS: This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.


Assuntos
Melhoramento Vegetal , Transcriptoma , Ovinos/genética , Animais , Metaboloma , Glicina , Serina , Treonina , Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...